IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v72y2019i2d10.1007_s10640-017-0199-3.html
   My bibliography  Save this article

Optimal Climate Policy for a Pessimistic Social Planner

Author

Listed:
  • Edilio Valentini

    (University G. d’Annunzio of Chieti-Pescara)

  • Paolo Vitale

    (University G. d’Annunzio of Chieti-Pescara)

Abstract

This paper characterizes the preferences of a pessimistic social planner concerned with the potential costs of extreme, low-probability climate events. This pessimistic attitude is represented by a recursive optimization criterion à la Hansen and Sargent (IEEE Trans Autom Control 40:968–971, 1995) implying that a very sharp and early mitigation effort arises as the optimal climate policy. We find that for sufficiently high levels of risk-aversion an aggressive mitigation policy is chosen even when the discount factor is low. The dynamics of the optimal mitigation policy displays an inverted policy ramp with a sharp and immediate mitigation effort, followed by a gradual reduction until the pollution stock converges towards its long-run equilibrium. We also observe that the initial sharpness of the mitigation effort requires substantial capture and sequestration of carbon from the atmosphere. We extend our analysis showing that when the social planner observes the concentration and emission levels with a time lag, she undertakes a more aggressive policy to reduce the greater degree of uncertainty she faces. Finally, we show under which conditions the optimal mitigation policy dictated by our analysis coincides with that derived using the robustness approach of Hansen and Sargent (Robustness, Princeton University Press, Princeton, 2008).

Suggested Citation

  • Edilio Valentini & Paolo Vitale, 2019. "Optimal Climate Policy for a Pessimistic Social Planner," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 411-443, February.
  • Handle: RePEc:kap:enreec:v:72:y:2019:i:2:d:10.1007_s10640-017-0199-3
    DOI: 10.1007/s10640-017-0199-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-017-0199-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-017-0199-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Christian Traeger, 2014. "Why uncertainty matters: discounting under intertemporal risk aversion and ambiguity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(3), pages 627-664, August.
    3. Paolo Vitale Author-Name-First Paolo, 2013. "Pessimistic optimal choice for risk-averse agents," Working Papers CASMEF 1306, Dipartimento di Economia e Finanza, LUISS Guido Carli.
    4. Antony Millner, 2013. "On Welfare Frameworks and Catastrophic Climate Risks," CESifo Working Paper Series 4442, CESifo.
    5. Martin, Ralf & de Preux, Laure B. & Wagner, Ulrich J., 2014. "The impact of a carbon tax on manufacturing: Evidence from microdata," Journal of Public Economics, Elsevier, vol. 117(C), pages 1-14.
    6. Etienne Espagne & Baptiste Perrissin Fabert & Antonin Pottier & Franck Nadaud & Patrice Dumas, 2012. "Disentangling the Stern/Nordhaus Controversy: Beyond the Discounting Clash," Working Papers 2012.61, Fondazione Eni Enrico Mattei.
    7. Derek Lemoine & Christian Traeger, 2014. "Watch Your Step: Optimal Policy in a Tipping Climate," American Economic Journal: Economic Policy, American Economic Association, vol. 6(1), pages 137-166, February.
    8. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    9. de Zeeuw, Aart & Zemel, Amos, 2012. "Regime shifts and uncertainty in pollution control," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 939-950.
    10. Svenja Hector(), "undated". "Accounting for Different Uncertainties: Implications for Climate Investments?," Working Papers ETH-RC-13-007, ETH Zurich, Chair of Systems Design.
    11. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    12. TallariniJr., Thomas D., 2000. "Risk-sensitive real business cycles," Journal of Monetary Economics, Elsevier, vol. 45(3), pages 507-532, June.
    13. Epstein, Larry G & Zin, Stanley E, 1991. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: An Empirical Analysis," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 263-286, April.
    14. In Hwang & Frédéric Reynès & Richard Tol, 2013. "Climate Policy Under Fat-Tailed Risk: An Application of Dice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 415-436, November.
    15. Benjamin Crost & Christian P. Traeger, 2014. "Optimal CO2 mitigation under damage risk valuation," Nature Climate Change, Nature, vol. 4(7), pages 631-636, July.
    16. Athanassoglou, Stergios & Xepapadeas, Anastasios, 2012. "Pollution control with uncertain stock dynamics: When, and how, to be precautious," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 304-320.
    17. Robert S. Pindyck & Neng Wang, 2013. "The Economic and Policy Consequences of Catastrophes," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 306-339, November.
    18. Buchholz, Wolfgang & Schymura, Michael, 2012. "Expected utility theory and the tyranny of catastrophic risks," Ecological Economics, Elsevier, vol. 77(C), pages 234-239.
    19. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    20. Rosen, Richard A. & Guenther, Edeltraud, 2015. "The economics of mitigating climate change: What can we know?," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 93-106.
    21. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    22. Millner, Antony, 2013. "On welfare frameworks and catastrophic climate risks," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 310-325.
    23. Karp, Larry & Zhang, Jiangfeng, 2006. "Regulation with anticipated learning about environmental damages," Journal of Environmental Economics and Management, Elsevier, vol. 51(3), pages 259-279, May.
    24. Svenja Hector, 2013. "Accounting for Different Uncertainties: Implications for Climate Investments?," Working Papers 2013.107, Fondazione Eni Enrico Mattei.
    25. Hector, Svenja, 2013. "Accounting for Different Uncertainties: Implications for Climate Investments?," Climate Change and Sustainable Development 162562, Fondazione Eni Enrico Mattei (FEEM).
    26. [multiple or corporate authorship]., 2014. "Cities chapter: better growth, better climate: the new climate economy report," LSE Research Online Documents on Economics 60480, London School of Economics and Political Science, LSE Library.
    27. van der Ploeg, Frederick, 2014. "Abrupt positive feedback and the social cost of carbon," European Economic Review, Elsevier, vol. 67(C), pages 28-41.
    28. Kelly, David L. & Kolstad, Charles D., 1999. "Bayesian learning, growth, and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 491-518, February.
    29. Frank Ackerman & Elizabeth Stanton & Ramón Bueno, 2013. "Epstein–Zin Utility in DICE: Is Risk Aversion Irrelevant to Climate Policy?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(1), pages 73-84, September.
    30. Paolo Vitale, 2017. "Pessimistic Optimal Choice for Risk-Averse Agents: The Continuous-Time Limit," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 17-65, January.
    31. Yulei Luo & Eric R. Young, 2010. "Risk-Sensitive Consumption and Savings under Rational Inattention," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(4), pages 281-325, October.
    32. Jensen, Svenn & Traeger, Christian P., 2014. "Optimal climate change mitigation under long-term growth uncertainty: Stochastic integrated assessment and analytic findings," European Economic Review, Elsevier, vol. 69(C), pages 104-125.
    33. Simon Dietz & David Maddison, 2009. "New Frontiers in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 295-306, July.
    34. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    35. Kreps, David M & Porteus, Evan L, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Econometrica, Econometric Society, vol. 46(1), pages 185-200, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edilio Valentini & Paolo Vitale, 2022. "A Dynamic Oligopoly with Price Stickiness and Risk-Averse Agents," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 8(3), pages 697-718, November.
    2. Valeria Costantini & Anil Markandya & Elena Paglialunga & Giorgia Sforna, 2018. "Impact and distribution of climatic damages: a methodological proposal with a dynamic CGE model applied to global climate negotiations," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 809-843, December.
    3. Svenn Jensen & Christian P. Traeger & Christian Träger, 2021. "Pricing Climate Risk," CESifo Working Paper Series 9196, CESifo.
    4. Valentini, Edilio & Vitale, Paolo, 2019. "Uncertainty and Risk-aversion in a Dynamic Oligopoly with Sticky Prices," ETA: Economic Theory and Applications 285025, Fondazione Eni Enrico Mattei (FEEM).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Jovan Okullo, 2020. "Determining the Social Cost of Carbon: Under Damage and Climate Sensitivity Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 79-103, January.
    2. van der Ploeg, Frederick & ,, 2018. "Pricing Carbon Under Economic and Climactic Risks: Leading-Order Results from Asymptotic Analysis," CEPR Discussion Papers 12642, C.E.P.R. Discussion Papers.
    3. Yongyang Cai & Thomas S. Lontzek, 2019. "The Social Cost of Carbon with Economic and Climate Risks," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2684-2734.
    4. Mariia Belaia & Michael Funke & Nicole Glanemann, 2017. "Global Warming and a Potential Tipping Point in the Atlantic Thermohaline Circulation: The Role of Risk Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 93-125, May.
    5. Kent D. Daniel & Robert B. Litterman & Gernot Wagner, 2016. "Applying Asset Pricing Theory to Calibrate the Price of Climate Risk," NBER Working Papers 22795, National Bureau of Economic Research, Inc.
    6. Olijslagers, Stan & van der Ploeg, Frederick & van Wijnbergen, Sweder, 2023. "On current and future carbon prices in a risky world," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    7. W. Botzen & Jeroen Bergh, 2014. "Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 1-33, May.
    8. Fleurbaey, Marc & Zuber, Stéphane, 2015. "Discounting, beyond utilitarianism," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-52.
    9. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    10. Jensen, Svenn & Traeger, Christian P., 2014. "Optimal climate change mitigation under long-term growth uncertainty: Stochastic integrated assessment and analytic findings," European Economic Review, Elsevier, vol. 69(C), pages 104-125.
    11. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    12. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    13. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    14. Lemoine, Derek & Traeger, Christian P., 2016. "Ambiguous tipping points," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 5-18.
    15. Christian Traeger, 2014. "Why uncertainty matters: discounting under intertemporal risk aversion and ambiguity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(3), pages 627-664, August.
    16. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    17. Kelly, David L. & Tan, Zhuo, 2015. "Learning and climate feedbacks: Optimal climate insurance and fat tails," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 98-122.
    18. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    19. In Chang Hwang & Richard S. J. Tol & Marjan W. Hofkes, 2019. "Active Learning and Optimal Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1237-1264, August.
    20. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.

    More about this item

    Keywords

    Climate change policy; Risk-aversion; Pessimism and precautionary principle; Linear exponential quadratic Gaussian; Carbon capture and sequestration;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:72:y:2019:i:2:d:10.1007_s10640-017-0199-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.