IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2016-20-2.html
   My bibliography  Save this article

The Emergence of Climate Change Mitigation Action by Society: An Agent-Based Scenario Discovery Study

Author

Listed:

Abstract

Developing model-based narratives of society’s response to climate change is challenged by two factors. First, society’s response to possible future climate change is subject to many uncertainties. Second, we argue that society’s mitigation action emerge out of the actions and interactions of the many actors in society. Together, these two factors imply that the overarching dynamics of society’s response to climate change are unpredictable. In contrast to conventional processes of developing scenarios, in this study the emergence of climate change mitigation action by society has been represented in an agent-based model with which we developed two narratives of the emergence of climate change mitigation action by applying exploratory modelling and analysis. The agent-based model represents a two-level game involving governments and citizens changing their emission behaviour in the face of climate change through mitigation action. Insights gained from the exploration on uncertainties pertaining to the system have been used to construct two internally consistent and plausible narratives on the pathways of the emergence of mitigation action, which, as we argue, are a reasonable summary of the uncertainty space. The first narrative highlights how and when strong mitigation action emerges while the second narrative highlights how and when weak mitigation action emerges. In contrast to a conventional scenario development process, these two scenarios have been discovered bottom up rather than being defined top down. They succinctly capture the possible outcomes of the emergence of climate change mitigation by society across a large range of uncertain factors. The narratives therefore help in conveying the consequences of the various uncertainties influencing the emergence of climate change mitigation action by society.

Suggested Citation

  • Sebastiaan Greeven & Oscar Kraan & Emile Chappin & Jan H. Kwakkel, 2016. "The Emergence of Climate Change Mitigation Action by Society: An Agent-Based Scenario Discovery Study," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(3), pages 1-9.
  • Handle: RePEc:jas:jasssj:2016-20-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/19/3/9/9.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rory Smead & Ronald L. Sandler & Patrick Forber & John Basl, 2014. "A bargaining game analysis of international climate negotiations," Nature Climate Change, Nature, vol. 4(6), pages 442-445, June.
    2. Julie Rozenberg & Céline Guivarch & Robert Lempert & Stéphane Hallegatte, 2014. "Building SSPs for climate policy analysis: a scenario elicitation methodology to map the space of possible future challenges to mitigation and adaptation," Climatic Change, Springer, vol. 122(3), pages 509-522, February.
    3. Céline Guivarch & Julie Rozenberg & Vanessa Schweizer, 2016. "The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database," Post-Print halshs-01292901, HAL.
    4. Elinor Ostrom, 2016. "Nested Externalities and Polycentric Institutions: Must We Wait for Global Solutions to Climate Change Before Taking Actions at Other Scales?," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 259-276, Springer.
    5. Pinto, Ligia M. & Harrison, Glenn W., 2003. "Multilateral negotiations over climate change policy," Journal of Policy Modeling, Elsevier, vol. 25(9), pages 911-930, December.
    6. Angel Hsu & Andrew S. Moffat & Amy J. Weinfurter & Jason D. Schwartz, 2015. "Towards a new climate diplomacy," Nature Climate Change, Nature, vol. 5(6), pages 501-503, June.
    7. Putnam, Robert D., 1988. "Diplomacy and domestic politics: the logic of two-level games," International Organization, Cambridge University Press, vol. 42(3), pages 427-460, July.
    8. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    9. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steinmann, Patrick & Auping, Willem L. & Kwakkel, Jan H., 2020. "Behavior-based scenario discovery using time series clustering," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    2. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    3. Hidayatno, Akhmad & Jafino, Bramka Arga & Setiawan, Andri D. & Purwanto, Widodo Wahyu, 2020. "When and why does transition fail? A model-based identification of adoption barriers and policy vulnerabilities for transition to natural gas vehicles," Energy Policy, Elsevier, vol. 138(C).
    4. Moallemi, Enayat A. & de Haan, Fjalar & Kwakkel, Jan & Aye, Lu, 2017. "Narrative-informed exploratory analysis of energy transition pathways: A case study of India's electricity sector," Energy Policy, Elsevier, vol. 110(C), pages 271-287.
    5. Jan Kwakkel & Willem Auping, 2021. "Reaction: A commentary on Lustick and Tetlock (2021)," Futures & Foresight Science, John Wiley & Sons, vol. 3(2), June.
    6. Kwakkel, J.H. & Cunningham, S.C., 2016. "Improving scenario discovery by bagging random boxes," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 124-134.
    7. Jan H. Kwakkel, 2019. "A generalized many‐objective optimization approach for scenario discovery," Futures & Foresight Science, John Wiley & Sons, vol. 1(2), June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    2. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    3. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    4. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    5. Kwakkel, J.H. & Cunningham, S.C., 2016. "Improving scenario discovery by bagging random boxes," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 124-134.
    6. Guillaume Rohat, 2018. "Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 15(3), pages 1-23, March.
    7. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    8. Céline Guivarch & Julie Rozenberg & Vanessa Schweizer, 2016. "The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database," Post-Print halshs-01292901, HAL.
    9. Steinmann, Patrick & Auping, Willem L. & Kwakkel, Jan H., 2020. "Behavior-based scenario discovery using time series clustering," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    10. Ethan B Kapstein, 2006. "Architects of stability? International cooperation among financial supervisors," BIS Working Papers 199, Bank for International Settlements.
    11. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    12. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    13. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    14. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Simon Hug & Tobias Schulz, 2007. "Referendums in the EU’s constitution building process," The Review of International Organizations, Springer, vol. 2(2), pages 177-218, June.
    16. Heike Schroeder, 2010. "Agency in international climate negotiations: the case of indigenous peoples and avoided deforestation," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 10(4), pages 317-332, December.
    17. Koichi Hamada & Asahi Noguchi, 2005. "The Role of Preconceived Ideas in Macroeconomic Policy: Japan's Experiences in the Two Deflationary Periods," Working Papers 908, Economic Growth Center, Yale University.
    18. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    19. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    20. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    21. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    22. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2016-20-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.