IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i3p554-d137033.html
   My bibliography  Save this article

Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways

Author

Listed:
  • Guillaume Rohat

    (Institute for Environmental Sciences, University of Geneva, 1205 Geneva, Switzerland
    Faculty of Geo-Information Science and Earth Observation, University of Twente, 7522 NB Enschede, The Netherlands)

Abstract

The Shared Socioeconomic Pathways (SSPs) are the new set of alternative futures of societal development that inform global and regional climate change research. They have the potential to foster the integration of socioeconomic scenarios within assessments of future climate-related health impacts. To date, such assessments have primarily superimposed climate scenarios on current socioeconomic conditions only. Until now, the few assessments of future health risks that employed the SSPs have focused on future human exposure—i.e., mainly future population patterns—, neglecting future human vulnerability. This paper first explores the research gaps—mainly linked to the paucity of available projections—that explain such a lack of consideration of human vulnerability under the SSPs. It then highlights the need for projections of socioeconomic variables covering the wide range of determinants of human vulnerability, available at relevant spatial and temporal scales, and accounting for local specificities through sectoral and regional extended versions of the global SSPs. Finally, this paper presents two innovative methods of obtaining and computing such socioeconomic projections under the SSPs—namely the scenario matching approach and an approach based on experts’ elicitation and correlation analyses—and applies them to the case of Europe. They offer a variety of possibilities for practical application, producing projections at sub-national level of various drivers of human vulnerability such as demographic and social characteristics, urbanization, state of the environment, infrastructure, health status, and living arrangements. Both the innovative approaches presented in this paper and existing methods—such as the spatial disaggregation of existing projections and the use of sectoral models—show great potential to enhance the availability of relevant projections of determinants of human vulnerability. Assessments of future climate-related health impacts should thus rely on these methods to account for future human vulnerability—under varying levels of socioeconomic development—and to explore its influence on future health risks under different degrees of climate change.

Suggested Citation

  • Guillaume Rohat, 2018. "Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 15(3), pages 1-23, March.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:3:p:554-:d:137033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/3/554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/3/554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.
    2. Céline Guivarch & Julie Rozenberg & Vanessa Schweizer, 2016. "The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database," Post-Print halshs-01292901, HAL.
    3. Bryan Jones & Claudia Tebaldi & Brian C. O’Neill & Keith Oleson & Jing Gao, 2018. "Avoiding population exposure to heat-related extremes: demographic change vs climate change," Climatic Change, Springer, vol. 146(3), pages 423-437, February.
    4. Christofer Åström & Daniel Oudin Åström & Camilla Andersson & Kristie L. Ebi & Bertil Forsberg, 2017. "Vulnerability Reduction Needed to Maintain Current Burdens of Heat-Related Mortality in a Changing Climate—Magnitude and Determinants," IJERPH, MDPI, vol. 14(7), pages 1-10, July.
    5. Jonathan E. Suk & Kristie L. Ebi & David Vose & Willy Wint & Neil Alexander & Koen Mintiens & Jan C. Semenza, 2014. "Indicators for Tracking European Vulnerabilities to the Risks of Infectious Disease Transmission due to Climate Change," IJERPH, MDPI, vol. 11(2), pages 1-18, February.
    6. G. Brooke Anderson & Keith W. Oleson & Bryan Jones & Roger D. Peng, 2018. "Projected trends in high-mortality heatwaves under different scenarios of climate, population, and adaptation in 82 US communities," Climatic Change, Springer, vol. 146(3), pages 455-470, February.
    7. Narasimha D. Rao & Bas J. van Ruijven & Keywan Riahi & Valentina Bosetti, 2017. "Improving poverty and inequality modelling in climate research," Nature Climate Change, Nature, vol. 7(12), pages 857-862, December.
    8. Wolfgang Lutz & Raya Muttarak, 2017. "Forecasting societies' adaptive capacities through a demographic metabolism model," Nature Climate Change, Nature, vol. 7(3), pages 177-184, March.
    9. W. Knorr & A. Arneth & L. Jiang, 2016. "Demographic controls of future global fire risk," Nature Climate Change, Nature, vol. 6(8), pages 781-785, August.
    10. Nebojsa Nakicenovic & Robert Lempert & Anthony Janetos, 2014. "A Framework for the Development of New Socio-economic Scenarios for Climate Change Research: Introductory Essay," Climatic Change, Springer, vol. 122(3), pages 351-361, February.
    11. Kristie L. Ebi, 2013. "Health in the New Scenarios for Climate Change Research," IJERPH, MDPI, vol. 11(1), pages 1-17, December.
    12. Hem H Dholakia & Vimal Mishra & Amit Garg, 2015. "Predicted Increases in Heat related Mortality under Climate Change in Urban India," Working Papers id:7115, eSocialSciences.
    13. Mouratiadou, Ioanna & Biewald, Anne & Pehl, Michaja & Bonsch, Markus & Baumstark, Lavinia & Klein, David & Popp, Alexander & Luderer, Gunnar & Kriegler, Elmar, 2016. "The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways," Environmental Science & Policy, Elsevier, vol. 64(C), pages 48-58.
    14. Dexter V. L. Hunt & D. Rachel Lombardi & Stuart Atkinson & Austin R. G. Barber & Matthew Barnes & Christopher T. Boyko & Julie Brown & John Bryson & David Butler & Silvio Caputo & Maria Caserio & Rich, 2012. "Scenario Archetypes: Converging Rather than Diverging Themes," Sustainability, MDPI, vol. 4(4), pages 1-33, April.
    15. Tomoko Hasegawa & Shinichiro Fujimori & Kiyoshi Takahashi & Tokuta Yokohata & Toshihiko Masui, 2016. "Economic implications of climate change impacts on human health through undernourishment," Climatic Change, Springer, vol. 136(2), pages 189-202, May.
    16. Daniel Rozell, 2017. "Using population projections in climate change analysis," Climatic Change, Springer, vol. 142(3), pages 521-529, June.
    17. Yangyang Xu & Jean-François Lamarque & Benjamin M. Sanderson, 2018. "The importance of aerosol scenarios in projections of future heat extremes," Climatic Change, Springer, vol. 146(3), pages 393-406, February.
    18. Thomas Wilbanks & Kristie Ebi, 2014. "SSPs from an impact and adaptation perspective," Climatic Change, Springer, vol. 122(3), pages 473-479, February.
    19. Philip Rees & Nicole Gaag & Joop Beer & Frank Heins, 2012. "European Regional Populations: Current Trends, Future Pathways, and Policy Options [Population des Régions Européennes: Tendances Actuelles, Développements Futurs et Options Politiques]," European Journal of Population, Springer;European Association for Population Studies, vol. 28(4), pages 385-416, November.
    20. Dholakia, Hem H. & Mishra, Vimal & Garg, Amit, 2015. "Predicted Increases in Heat related Mortality under Climate Change in Urban India," IIMA Working Papers WP2015-05-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    21. Tineke Fokkema & Aart C. Liefbroer, 2008. "Trends in living arrangements in Europe: Convergence or divergence?," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 19(36), pages 1351-1418.
    22. Alex Sherbinin, 2014. "Climate change hotspots mapping: what have we learned?," Climatic Change, Springer, vol. 123(1), pages 23-37, March.
    23. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.
    24. A. Marsha & S. R. Sain & M. J. Heaton & A. J. Monaghan & O.V. Wilhelmi, 2018. "Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA," Climatic Change, Springer, vol. 146(3), pages 471-485, February.
    25. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    26. Samuel Sellers & Kristie L. Ebi, 2017. "Climate Change and Health under the Shared Socioeconomic Pathway Framework," IJERPH, MDPI, vol. 15(1), pages 1-18, December.
    27. Andrew J. Monaghan & K. M. Sampson & D. F. Steinhoff & K. C. Ernst & K. L. Ebi & B. Jones & M. H. Hayden, 2018. "The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti," Climatic Change, Springer, vol. 146(3), pages 487-500, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alice McGushin & Yassen Tcholakov & Shakoor Hajat, 2018. "Climate Change and Human Health: Health Impacts of Warming of 1.5 °C and 2 °C," IJERPH, MDPI, vol. 15(6), pages 1-4, May.
    2. Mohammad Ehsanul Kabir & Palash Kamruzzaman, 2022. "Exploring the Drivers of Vulnerability Among Disadvantaged Internal Migrants in Riverbank Erosion Prone Areas in North-West Bangladesh," Journal of South Asian Development, , vol. 17(1), pages 57-83, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.
    2. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    3. Guillaume Rohat & Olga Wilhelmi & Johannes Flacke & Andrew Monaghan & Jing Gao & Martin Maarseveen & Hy Dao, 2021. "Assessing urban heat-related adaptation strategies under multiple futures for a major U.S. city," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    4. Lena Reimann & Bryan Jones & Nora Bieker & Claudia Wolff & Jeroen C.J.H. Aerts & Athanasios T. Vafeidis, 2023. "Exploring spatial feedbacks between adaptation policies and internal migration patterns due to sea-level rise," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    6. Min Zhu & Zengxin Zhang & Bin Zhu & Rui Kong & Fengying Zhang & Jiaxi Tian & Tong Jiang, 2020. "Population and Economic Projections in the Yangtze River Basin Based on Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    7. Kemp-Benedict, Eric & Carlsen, Henrik & Kartha, Sivan, 2019. "Large-scale scenarios as ‘boundary conditions’: A cross-impact balance simulated annealing (CIBSA) approach," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 55-63.
    8. Sebastiaan Greeven & Oscar Kraan & Emile Chappin & Jan H. Kwakkel, 2016. "The Emergence of Climate Change Mitigation Action by Society: An Agent-Based Scenario Discovery Study," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(3), pages 1-9.
    9. Hamish Clarke & Rachael H. Nolan & Victor Resco Dios & Ross Bradstock & Anne Griebel & Shiva Khanal & Matthias M. Boer, 2022. "Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Lloyd, Simon J. & Bangalore, Mook & Chalabi, Zaid & Kovats, R. Sari & Hallegatte, Stèphane & Rozenberg, Julie & Valin, Hugo & Havlik, Petr, 2018. "A global-level model of the potential impacts of climate change on child stunting via income and food price in 2030," LSE Research Online Documents on Economics 90594, London School of Economics and Political Science, LSE Library.
    11. Domicián Máté & Mohammad Fazle Rabbi & Adam Novotny & Sándor Kovács, 2020. "Grand Challenges in Central Europe: The Relationship of Food Security, Climate Change, and Energy Use," Energies, MDPI, vol. 13(20), pages 1-16, October.
    12. Matthias Kühnbach & Felix Guthoff & Anke Bekk & Ludger Eltrop, 2020. "Development of Scenarios for a Multi-Model System Analysis Based on the Example of a Cellular Energy System," Energies, MDPI, vol. 13(4), pages 1-23, February.
    13. Céline Guivarch & Julie Rozenberg & Vanessa Schweizer, 2016. "The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database," Post-Print halshs-01292901, HAL.
    14. Absar, Syeda Mariya & McManamay, Ryan A. & Preston, Benjamin L. & Taylor, Adam M., 2021. "Bridging global socioeconomic scenarios with policy adaptations to examine energy-water tradeoffs," Energy Policy, Elsevier, vol. 149(C).
    15. Carlos F. Mena & Fátima L. Benitez & Carolina Sampedro & Patricia Martinez & Alex Quispe & Melinda Laituri, 2022. "Modeling Urban Growth and the Impacts of Climate Change: The Case of Esmeraldas City, Ecuador," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    16. William G. Moseley, 2016. "Agriculture on the Brink: Climate Change, Labor and Smallholder Farming in Botswana," Land, MDPI, vol. 5(3), pages 1-14, June.
    17. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    18. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Busby, Joshua & Smith, Todd G. & Krishnan, Nisha & Wight, Charles & Vallejo-Gutierrez, Santiago, 2018. "In harm's way: Climate security vulnerability in Asia," World Development, Elsevier, vol. 112(C), pages 88-118.
    20. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:3:p:554-:d:137033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.