IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i7p741-d103952.html
   My bibliography  Save this article

Vulnerability Reduction Needed to Maintain Current Burdens of Heat-Related Mortality in a Changing Climate—Magnitude and Determinants

Author

Listed:
  • Christofer Åström

    (Division of Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, SE90187 Umeå, Sweden)

  • Daniel Oudin Åström

    (Division of Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, SE90187 Umeå, Sweden
    Department of Clinical Sciences, Malmö, Lund University, Jan Waldenströms gata 35, SE21428 Malmö, Sweden)

  • Camilla Andersson

    (Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, SE60176 Norrköping, Sweden)

  • Kristie L. Ebi

    (School of Public Health, University of Washington, 4225 Roosevelt Way NE #100, Seattle, WA 98105, USA)

  • Bertil Forsberg

    (Division of Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, SE90187 Umeå, Sweden)

Abstract

The health burden from heatwaves is expected to increase with rising global mean temperatures and more extreme heat events over the coming decades. Health-related effects from extreme heat are more common in elderly populations. The population of Europe is rapidly aging, which will increase the health effects of future temperatures. In this study, we estimate the magnitude of adaptation needed to lower vulnerability to heat in order to prevent an increase in heat-related deaths in the 2050s; this is the Adaptive Risk Reduction (ARR) needed. Temperature projections under Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 from 18 climate models were coupled with gridded population data and exposure-response relationships from a European multi-city study on heat-related mortality. In the 2050s, the ARR for the general population is 53.5%, based on temperature projections under RCP 4.5. For the population above 65 years in Southern Europe, the ARR is projected to be 45.9% in a future with an unchanged climate and 74.7% with climate change under RCP 4.5. The ARRs were higher under RCP 8.5. Whichever emission scenario is followed or population projection assumed, Europe will need to adapt to a great degree to maintain heat-related mortality at present levels, which are themselves unacceptably high, posing an even greater challenge.

Suggested Citation

  • Christofer Åström & Daniel Oudin Åström & Camilla Andersson & Kristie L. Ebi & Bertil Forsberg, 2017. "Vulnerability Reduction Needed to Maintain Current Burdens of Heat-Related Mortality in a Changing Climate—Magnitude and Determinants," IJERPH, MDPI, vol. 14(7), pages 1-10, July.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:7:p:741-:d:103952
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/7/741/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/7/741/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiantian Li & Radley M. Horton & Patrick L. Kinney, 2013. "Projections of seasonal patterns in temperature- related deaths for Manhattan, New York," Nature Climate Change, Nature, vol. 3(8), pages 717-721, August.
    2. Weisskopf, M.G. & Anderson, H.A. & Foldy, S. & Hanrahan, L.P. & Blair, K. & Török, T.J. & Rumm, P.D., 2002. "Heat wave morbidity and mortality, Milwaukee, Wis, 1999 vs 1995: An improved response?," American Journal of Public Health, American Public Health Association, vol. 92(5), pages 830-833.
    3. Knowlton, K. & Lynn, B. & Goldberg, R.A. & Rosenzweig, C. & Hogrefe, C. & Rosenthal, J.K. & Kinney, P.L., 2007. "Projecting heat-related mortality impacts under a changing climate in the New York City region," American Journal of Public Health, American Public Health Association, vol. 97(11), pages 2028-2034.
    4. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    5. Francesca K. De’ Donato & Michela Leone & Matteo Scortichini & Manuela De Sario & Klea Katsouyanni & Timo Lanki & Xavier Basagaña & Ferran Ballester & Christofer Åström & Anna Paldy & Mathilde Pascal , 2015. "Changes in the Effect of Heat on Mortality in the Last 20 Years in Nine European Cities. Results from the PHASE Project," IJERPH, MDPI, vol. 12(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alina Herrmann & Rainer Sauerborn, 2018. "General Practitioners’ Perceptions of Heat Health Impacts on the Elderly in the Face of Climate Change—A Qualitative Study in Baden-Württemberg, Germany," IJERPH, MDPI, vol. 15(5), pages 1-21, April.
    2. Jennifer Vanos & Gisel Guzman-Echavarria & Jane W. Baldwin & Coen Bongers & Kristie L. Ebi & Ollie Jay, 2023. "A physiological approach for assessing human survivability and liveability to heat in a changing climate," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Nicola Banwell & Shannon Rutherford & Brendan Mackey & Cordia Chu, 2018. "Towards Improved Linkage of Disaster Risk Reduction and Climate Change Adaptation in Health: A Review," IJERPH, MDPI, vol. 15(4), pages 1-18, April.
    4. Guillaume Rohat, 2018. "Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 15(3), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisaveta P. Petkova & Radley M. Horton & Daniel A. Bader & Patrick L. Kinney, 2013. "Projected Heat-Related Mortality in the U.S. Urban Northeast," IJERPH, MDPI, vol. 10(12), pages 1-14, December.
    2. Philip E. Morefield & Neal Fann & Anne Grambsch & William Raich & Christopher P. Weaver, 2018. "Heat-Related Health Impacts under Scenarios of Climate and Population Change," IJERPH, MDPI, vol. 15(11), pages 1-17, November.
    3. Elisaveta P. Petkova & Daniel A. Bader & G. Brooke Anderson & Radley M. Horton & Kim Knowlton & Patrick L. Kinney, 2014. "Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities," IJERPH, MDPI, vol. 11(11), pages 1-13, October.
    4. Aleš Urban & Hana Hanzlíková & Jan Kyselý & Eva Plavcová, 2017. "Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves," IJERPH, MDPI, vol. 14(12), pages 1-19, December.
    5. Gino D. Marinucci & George Luber & Christopher K. Uejio & Shubhayu Saha & Jeremy J. Hess, 2014. "Building Resilience against Climate Effects—A Novel Framework to Facilitate Climate Readiness in Public Health Agencies," IJERPH, MDPI, vol. 11(6), pages 1-26, June.
    6. Dholakia, Hem H. & Mishra, Vimal & Garg, Amit, 2015. "Predicted Increases in Heat related Mortality under Climate Change in Urban India," IIMA Working Papers WP2015-05-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    7. Michael T Schmeltz & Grace Sembajwe & Peter J Marcotullio & Jean A Grassman & David U Himmelstein & Stephanie Woolhandler, 2015. "Identifying Individual Risk Factors and Documenting the Pattern of Heat-Related Illness through Analyses of Hospitalization and Patterns of Household Cooling," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    8. Joris Adriaan Frank Van Loenhout & Jose Manuel Rodriguez-Llanes & Debarati Guha-Sapir, 2016. "Stakeholders’ Perception on National Heatwave Plans and Their Local Implementation in Belgium and The Netherlands," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
    9. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    10. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Mare Lõhmus, 2018. "Possible Biological Mechanisms Linking Mental Health and Heat—A Contemplative Review," IJERPH, MDPI, vol. 15(7), pages 1-21, July.
    12. Jae Young Lee & Martin Röösli & Martina S. Ragettli, 2021. "Estimation of Heat-Attributable Mortality Using the Cross-Validated Best Temperature Metric in Switzerland and South Korea," IJERPH, MDPI, vol. 18(12), pages 1-9, June.
    13. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    14. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    15. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    16. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    17. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    18. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    19. Matteo Scortichini & Manuela De Sario & Francesca K. De’Donato & Marina Davoli & Paola Michelozzi & Massimo Stafoggia, 2018. "Short-Term Effects of Heat on Mortality and Effect Modification by Air Pollution in 25 Italian Cities," IJERPH, MDPI, vol. 15(8), pages 1-12, August.
    20. Tamás Hajdu & Gábor Hajdu, 2022. "Temperature, climate change, and human conception rates: evidence from Hungary," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1751-1776, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:7:p:741-:d:103952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.