IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v61y2015i4p772-794.html
   My bibliography  Save this article

Electric Vehicles with a Battery Switching Station: Adoption and Environmental Impact

Author

Listed:
  • Buket Avci

    (Lee Kong Chian School of Business, Singapore Management University, Singapore 178899)

  • Karan Girotra

    (Technology and Operations Management, INSEAD, 77305 Fontainebleau, France)

  • Serguei Netessine

    (Technology and Operations Management, INSEAD, Singapore 138676)

Abstract

The transportation sector's carbon footprint and dependence on oil are of deep concern to policy makers in many countries. Use of all-electric drive trains is arguably the most realistic medium-term solution to address these concerns. However, motorist anxiety induced by an electric vehicle's limited range and high battery cost have constrained consumer adoption. A novel switching-station-based solution is touted as a promising remedy. Vehicles use standardized batteries that, when depleted, can be switched for fully charged batteries at switching stations, and motorists only pay for battery use. We build a model that highlights the key mechanisms driving adoption and use of electric vehicles in this new switching-station-based electric vehicle system and contrast it with conventional electric vehicles. Our model employs results from repairable item inventory theory to capture switching-station operation; we embed this model in a behavioral model of motorist use and adoption. Switching-station systems effectively transfer range risk from motorists to the station operator, who, through statistical economies of scale, can better manage it. We find that this transfer of risk can lead to higher electric vehicle adoption than in a conventional system, but it also encourages more driving than a conventional system does. We calibrate our models with motorist behavior data, electric vehicle technology data, operation costs, and emissions data to estimate the relative effectiveness of the two systems under the status quo and other plausible future scenarios. We find that the system that is more effective at reducing emissions is often less effective at reducing oil dependence, and the misalignment between the two objectives is most severe when the energy mix is coal heavy and has advanced battery technology. Increases in gasoline prices (by imposition of taxes, for instance) are much more effective in reducing carbon emissions, whereas battery-price-reducing policy interventions are more effective for reducing oil dependence. Taken together, our results help a policy maker identify the superior system for achieving the desired objectives. They also highlight that policy makers should not conflate the dual objectives of oil dependence and emissions reductions as the preferred system, and the policy interventions that further that system may be different for the two objectives. This paper was accepted by Yossi Aviv, operations management .

Suggested Citation

  • Buket Avci & Karan Girotra & Serguei Netessine, 2015. "Electric Vehicles with a Battery Switching Station: Adoption and Environmental Impact," Management Science, INFORMS, vol. 61(4), pages 772-794, April.
  • Handle: RePEc:inm:ormnsc:v:61:y:2015:i:4:p:772-794
    DOI: 10.1287/mnsc.2014.1916
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2014.1916
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2014.1916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Espey, Molly, 1998. "Gasoline demand revisited: an international meta-analysis of elasticities," Energy Economics, Elsevier, vol. 20(3), pages 273-295, June.
    2. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    3. Sang-Hyun Kim & Morris A. Cohen & Serguei Netessine, 2007. "Performance Contracting in After-Sales Service Supply Chains," Management Science, INFORMS, vol. 53(12), pages 1843-1858, December.
    4. Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2013. "Infrastructure Planning for Electric Vehicles with Battery Swapping," Management Science, INFORMS, vol. 59(7), pages 1557-1575, July.
    5. Stefan Ambec & Claude Crampes, 2010. "Electricity Production with Intermittent Sources of Energy," LERNA Working Papers 10.07.313, LERNA, University of Toulouse.
    6. Dahl, Carol A, 1979. "Consumer Adjustment to a Gasoline Tax," The Review of Economics and Statistics, MIT Press, vol. 61(3), pages 427-432, August.
    7. Karan Girotra & Serguei Netessine, 2013. "OM Forum —Business Model Innovation for Sustainability," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 537-544, October.
    8. Jeroen Struben & John D. Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Post-Print hal-02312277, HAL.
    9. Gérard P. Cachon, 2014. "Retail Store Density and the Cost of Greenhouse Gas Emissions," Management Science, INFORMS, vol. 60(8), pages 1907-1925, August.
    10. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
    11. Vishal V. Agrawal & Mark Ferguson & L. Beril Toktay & Valerie M. Thomas, 2012. "Is Leasing Greener Than Selling?," Management Science, INFORMS, vol. 58(3), pages 523-533, March.
    12. Craig C. Sherbrooke, 1968. "Metric: A Multi-Echelon Technique for Recoverable Item Control," Operations Research, INFORMS, vol. 16(1), pages 122-141, February.
    13. Ronald W. Wolff, 1982. "Poisson Arrivals See Time Averages," Operations Research, INFORMS, vol. 30(2), pages 223-231, April.
    14. Ramteen Sioshansi, 2012. "OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions," Operations Research, INFORMS, vol. 60(3), pages 506-516, June.
    15. Nirvikar Singh & Xavier Vives, 1984. "Price and Quantity Competition in a Differentiated Duopoly," RAND Journal of Economics, The RAND Corporation, vol. 15(4), pages 546-554, Winter.
    16. Ambec, Stefan & Crampes, Claude, 2010. "Electricity Production with Intermittent Sources," IDEI Working Papers 608, Institut d'Économie Industrielle (IDEI), Toulouse.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Weixiang & Zhu, Han, 2021. "Performance evaluation and improvement for ZEV credit regulation in a competitive environment," Omega, Elsevier, vol. 102(C).
    2. Shao, Lulu & Yang, Jun & Zhang, Min, 2017. "Subsidy scheme or price discount scheme? Mass adoption of electric vehicles under different market structures," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1181-1195.
    3. Havranek, Tomas & Irsova, Zuzana & Janda, Karel, 2012. "Demand for gasoline is more price-inelastic than commonly thought," Energy Economics, Elsevier, vol. 34(1), pages 201-207.
    4. Michael K. Lim & Ho-Yin Mak & Ying Rong, 2015. "Toward Mass Adoption of Electric Vehicles: Impact of the Range and Resale Anxieties," Manufacturing & Service Operations Management, INFORMS, vol. 17(1), pages 101-119, February.
    5. Erica L. Plambeck, 2013. "OM Forum —Operations Management Challenges for Some “Cleantech” Firms," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 527-536, October.
    6. Chen, Haotian & Smyth, Russell & Zhang, Xibin, 2017. "A Bayesian sampling approach to measuring the price responsiveness of gasoline demand using a constrained partially linear model," Energy Economics, Elsevier, vol. 67(C), pages 346-354.
    7. Zimmer, Anne & Koch, Nicolas, 2017. "Fuel consumption dynamics in Europe: Tax reform implications for air pollution and carbon emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 22-50.
    8. Bigerna, S. & Bollino, C.A. & Micheli, S. & Polinori, P., 2017. "Revealed and stated preferences for CO2 emissions reduction: The missing link," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1213-1221.
    9. Nur Sunar & Jayashankar M. Swaminathan, 2022. "Socially relevant and inclusive operations management," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4379-4392, December.
    10. Wenbin Wang & Mark E. Ferguson & Shanshan Hu & Gilvan C. Souza, 2013. "Dynamic Capacity Investment with Two Competing Technologies," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 616-629, October.
    11. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    12. Liddle, Brantley & Parker, Steven, 2022. "One more for the road: Reconsidering whether OECD gasoline income and price elasticities have changed over time," Energy Economics, Elsevier, vol. 114(C).
    13. Broberg, Thomas, 2014. "Relative income and the WTP for public goods - A case study of forest conservation in Sweden," CERE Working Papers 2014:6, CERE - the Center for Environmental and Resource Economics.
    14. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    15. Yuliya Lovcha & Alejandro Perez-Laborda, 2017. "Structural shocks and dynamic elasticities in a long memory model of the US gasoline retail market," Empirical Economics, Springer, vol. 53(2), pages 405-422, September.
    16. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    17. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    18. Arzaghi, Mohammad & Squalli, Jay, 2015. "How price inelastic is demand for gasoline in fuel-subsidizing economies?," Energy Economics, Elsevier, vol. 50(C), pages 117-124.
    19. Scott, K. Rebecca, 2015. "Demand and price uncertainty: Rational habits in international gasoline demand," Energy, Elsevier, vol. 79(C), pages 40-49.
    20. Li, Zheng & Hensher, David A. & Rose, John M., 2011. "Identifying sources of systematic variation in direct price elasticities from revealed preference studies of inter-city freight demand," Transport Policy, Elsevier, vol. 18(5), pages 727-734, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:61:y:2015:i:4:p:772-794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.