IDEAS home Printed from https://ideas.repec.org/a/gta/jnlgea/v1y2016i2p156-187.html
   My bibliography  Save this article

GTAP-E-Power: An Electricity-detailed Economy-wide Model

Author

Listed:
  • Jeffrey C Peters

Abstract

Global economic analysis of energy and climate policy often uses an aggregate representation of the electricity sector (e.g., GTAP-E). However, disproportionate technological progress and policies across different generating technologies requires a more detailed representation that identifies and allows for substitution between generating technologies. GTAP-E-Power extends the GTAP-E model to include transmission and distribution as well as substitution between nuclear, coal, gas base load, gas peak load, oil base load, oil peak load, hydro base load, hydro peak load, wind, solar, and 'other' power. Electric power substitution is represented with a nested additive constant elasticity of substitution which, opposed to the traditional constant elasticity of substitution, ensures that the sum of demands for generation from each technology is equal to total demand for electricity generation. The primary purpose of GTAP-E-Power is to serve as guidance for implementing the GTAP-Power Data Base in a computable general equilibrium model with substitution between electricity generating technologies to inform economic, energy, and climate policy.

Suggested Citation

  • Jeffrey C Peters, 2016. "GTAP-E-Power: An Electricity-detailed Economy-wide Model," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 156-187, December.
  • Handle: RePEc:gta:jnlgea:v:1:y:2016:i:2:p:156-187
    DOI: http://dx.doi.org/10.21642/JGEA.010204AF
    as

    Download full text from publisher

    File URL: https://www.jgea.org/ojs/index.php/jgea/article/view/27/16
    Download Restriction: no

    File URL: https://libkey.io/http://dx.doi.org/10.21642/JGEA.010204AF?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philip D. Adams & Brian R. Parmenter & George Verikios, 2014. "An Emissions Trading Scheme for Australia: National and Regional Impacts," The Economic Record, The Economic Society of Australia, vol. 90(290), pages 316-344, September.
    2. Wing, Ian Sue, 2006. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technologies and the cost of limiting US CO2 emissions," Energy Policy, Elsevier, vol. 34(18), pages 3847-3869, December.
    3. Jeffrey C Peters, 2016. "The GTAP-Power Data Base: Disaggregating the Electricity Sector in the GTAP Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 209-250, June.
    4. McDougall, Robert & Alla Golub, 2007. "GTAP-E: A Revised Energy-Environmental Version of the GTAP Model," GTAP Research Memoranda 2959, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    5. Elmar Kriegler & John Weyant & Geoffrey Blanford & Volker Krey & Leon Clarke & Jae Edmonds & Allen Fawcett & Gunnar Luderer & Keywan Riahi & Richard Richels & Steven Rose & Massimo Tavoni & Detlef Vuu, 2014. "The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies," Climatic Change, Springer, vol. 123(3), pages 353-367, April.
    6. Cai, Yiyong & Arora, Vipin, 2015. "Disaggregating electricity generation technologies in CGE models: A revised technology bundle approach with an application to the U.S. Clean Power Plan," Applied Energy, Elsevier, vol. 154(C), pages 543-555.
    7. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    8. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    10. P. Capros & Denise Van Regemorter & Leonidas Paroussos & P. Karkatsoulis & C. Fragkiadakis & S. Tsani & I. Charalampidis & Tamas Revesz, 2013. "GEM-E3 Model Documentation," JRC Research Reports JRC83177, Joint Research Centre.
    11. Jeffrey C. Peters & Thomas W. Hertel, 2017. "Achieving the Clean Power Plan 2030 CO2 Target with the New Normal in Natural Gas Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    2. Jafari, Yaghoob & Engemann, Helena & Heckelei, Thomas & Hainsch, Karlo, 2023. "National and Regional Economic Impacts of changes in Germany's electricity mix: A dynamic analysis through 2050," Utilities Policy, Elsevier, vol. 82(C).
    3. Marginson, Sam, 2020. "Global economic implications of the Nationally Determined Contributions of the Paris Agreement," Conference papers 333164, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Birur, Dileep & Lal, Pankaj & Levin, Todd & Zhou, Zhi & Wolde, Bernabas & Wieczerak, Taylor & Thimmapuram, Prakash, 2022. "Fostering Green Economy in New Jersey under the aegis of Regional Greenhouse Gas Initiative," Conference papers 333434, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Antonio, Katherine & Narayanan, Badri, 2018. "The General Equilibrium Effects of Environmental Regulations in the Electricity Generation," Conference papers 332989, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Chepeliev, Maksym & Osorio-Rodarte, Israel & van der Mensbrugghe, Dominique, 2021. "Distributional impacts of carbon pricing policies under the Paris Agreement: Inter and intra-regional perspectives," Energy Economics, Elsevier, vol. 102(C).
    7. Antimiani, Alessandro & Costantini, Valeria & Paglialunga, Elena, 2023. "Fossil fuels subsidy removal and the EU carbon neutrality policy," Energy Economics, Elsevier, vol. 119(C).
    8. Maksym Chepeliev, 2023. "GTAP-Power Data Base: Version 11," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 8(2), pages 100-133, December.
    9. Andrea M. Bassi & Valeria Costantini & Elena Paglialunga, 2021. "Modelling the European Union Sustainability Transition: A Soft-Linking Approach," Sustainability, MDPI, vol. 13(11), pages 1-24, June.
    10. Vafa Anvari & Channing Arndt & Faaiqa Hartley & Konstantin Makrelov & Kenneth Strezepek & Tim Thomas & Sherwin Gabriel & Bruno Merven, 2022. "AclimatechangemodellingframeworkforfinancialstresstestinginSouthernAfrica," Working Papers 11030, South African Reserve Bank.
    11. Nong, Duy & Simshauser, Paul & Nguyen, Duong Binh, 2021. "Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax," Applied Energy, Elsevier, vol. 298(C).
    12. Konstantins Benkovskis & Dzintars Jaunzems & Olegs Matvejevs, 2023. "A Purpose-Based Energy Substitution Structure For CGE," Working Papers 2023/07, Latvijas Banka.
    13. Wilts, Rienne & Britz, Wolfgang, 2022. "Quantifying SDG indicators for multiple SSPs up to 2050 with a focus on selected low and low-middle income countries and the bio-economy based on CGE analysis," Conference papers 333473, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Glyn Wittwer & Mark Horridge, 2018. "Prefectural Representation of the Regions of China in a Bottom-up CGE Model: SinoTERM365," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 3(2), pages 178-213, December.
    15. Jing Han & Weilin Zhu & Chaofan Chen, 2023. "Identifying Emissions Reduction Opportunities in International Bilateral Emissions Trading Systems to Achieve China’s Energy Sector NDCs," IJERPH, MDPI, vol. 20(2), pages 1-24, January.
    16. Nong, Duy & Siriwardana, Mahinda, 2018. "Potential impacts of the Emissions Reduction Fund on the Australian economy," Energy Economics, Elsevier, vol. 74(C), pages 387-398.
    17. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Vandyck, Toon & Weitzel, Matthias & Wojtowicz, Krzysztof & Rey Los Santos, Luis & Maftei, Anamaria & Riscado, Sara, 2021. "Climate policy design, competitiveness and income distribution: A macro-micro assessment for 11 EU countries," Energy Economics, Elsevier, vol. 103(C).
    19. Nong, Duy, 2020. "Development of the electricity-environmental policy CGE model (GTAP-E-PowerS): A case of the carbon tax in South Africa," Energy Policy, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Truong, Truong P. & Hamasaki, Hiroshi, 2021. "Technology substitution in the electricity sector - a top down approach with bottom up characteristics," Energy Economics, Elsevier, vol. 101(C).
    2. Standardi, Gabriele & Cai, Yiyong & Yeh, Sonia, 2017. "Sensitivity of modeling results to technological and regional details: The case of Italy's carbon mitigation policy," Energy Economics, Elsevier, vol. 63(C), pages 116-128.
    3. Clora, Francesco & Yu, Wusheng, 2022. "GHG emissions, trade balance, and carbon leakage: Insights from modeling thirty-one European decarbonization pathways towards 2050," Energy Economics, Elsevier, vol. 113(C).
    4. Sarasa, Cristina & Turner, Karen, 2021. "Can a combination of efficiency initiatives give us “good” rebound effects?," Energy, Elsevier, vol. 235(C).
    5. Kamel Almutairi & Greg Thoma & Alvaro Durand-Morat, 2018. "Ex-Ante Analysis of Economic, Social and Environmental Impacts of Large-Scale Renewable and Nuclear Energy Targets for Global Electricity Generation by 2030," Sustainability, MDPI, vol. 10(8), pages 1-25, August.
    6. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    7. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. B. Henderson & A. Golub & D. Pambudi & T. Hertel & C. Godde & M. Herrero & O. Cacho & P. Gerber, 2018. "The power and pain of market-based carbon policies: a global application to greenhouse gases from ruminant livestock production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 349-369, March.
    9. Taheripour, Farzad & Tyner, Wallace E., 2014. "Shale oil and gas booms: Consequences for agricultural and biofuel industries," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170238, Agricultural and Applied Economics Association.
    10. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    11. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    12. Antimiani, Alessandro & Costantini, Valeria & Martini, Chiara & Salvatici, Luca & Tommasino, Maria Cristina, 2011. "Cooperative and non-cooperative solutions to carbon leakage," Conference papers 332096, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Levent Aydın, 2018. "The possible macroeconomic and sectoral impacts of carbon taxation on Turkey’s economy: A computable general equilibrium analyses," Energy & Environment, , vol. 29(5), pages 784-801, August.
    14. Taheripour, Farzad & Hertel, Thomas W. & Gopalakrishnan, Badri N. & Sahin, Sebnem & Escurra, Jorge J., 2015. "Agricultural production, irrigation, climate change, and water scarcity in India," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205591, Agricultural and Applied Economics Association.
    15. Jeffrey C. Peters & Thomas W. Hertel, 2017. "Achieving the Clean Power Plan 2030 CO2 Target with the New Normal in Natural Gas Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    16. Nong, Duy & Siriwardana, Mahinda, 2018. "Potential impacts of the Emissions Reduction Fund on the Australian economy," Energy Economics, Elsevier, vol. 74(C), pages 387-398.
    17. Natalia Vechiu & Oscar Kuikeu, 2009. "The impact of globalization on FDIs: an empirical assessment for Central and Eastern European Countries," Post-Print hal-01881848, HAL.
    18. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
    19. Jensbye, Laerke & Clora, Francesco & Yu, Wusheng, 2022. "Nationally determined contributions and scenarios of agricultural emission reductions at country level," Conference papers 333465, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Thaeripour, Farzad & Hertel, Thomas W. & Tyner, Wallace E. & Beckman, Jayson F. & Birur, Dileep K., 2008. "Biofuels and their By-Products: Global Economic and Environmental Implications," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6452, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gta:jnlgea:v:1:y:2016:i:2:p:156-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jeremy Douglas (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.