IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i10p1785-d113956.html
   My bibliography  Save this article

Dispatchable Hydrogen Production at the Forecourt for Electricity Demand Shaping

Author

Listed:
  • Abdulla Rahil

    () (Institute of Energy and Sustainable Development, De Montfort University, Queens Building, The Gateway, Leicester LE19BH, UK)

  • Rupert Gammon

    () (Institute of Energy and Sustainable Development, De Montfort University, Queens Building, The Gateway, Leicester LE19BH, UK)

Abstract

Environmental issues and concerns about depletion of fossil fuels have driven rapid growth in the generation of renewable energy (RE) and its use in electricity grids. Similarly, the need for an alternative to hydrocarbon fuels means that the number of fuel cell vehicles is also expected to increase. The ability of electricity networks to balance supply and demand is greatly affected by the variable, intermittent output of RE generators; however, this could be relieved using energy storage and demand-side response (DSR) techniques. One option would be production of hydrogen by electrolysis powered from wind and solar sources. The use of tariff structures would provide an incentive to operate electrolysers as dispatchable loads. The aim of this paper is to compare the cost of hydrogen production by electrolysis at garage forecourts in Libya, for both dispatchable and continuous operation, without interruption of fuel supply to vehicles. The coastal city of Derna was chosen as a case study, with the renewable energy being produced via a wind turbine farm. Wind speed was analysed in order to determine a suitable turbine, then the capacity was calculated to estimate how many turbines would be needed to meet demand. Finally, the excess power was calculated, based on the discrepancy between supply and demand. The study looked at a hydrogen refueling station in both dispatchable and continuous operation, using an optimisation algorithm. The following three scenarios were considered to determine whether the cost of electrolytic hydrogen could be reduced by a lower off-peak electricity price. These scenarios are: Standard Continuous, in which the electrolyser operates continuously on a standard tariff of 12 p/kWh; Off-peak Only, in which the electrolyser operates only during off-peak periods at the lower price of 5 p/kWh; and 2-Tier Continuous, in which the electrolyser operates continuously on a low tariff at off-peak times and a high tariff at other times. The results indicate that Scenario 2 produced the cheapest electricity at £2.90 per kg of hydrogen, followed by Scenario 3 at £3.80 per kg, and the most expensive was Scenario 1 at £6.90 per kg.

Suggested Citation

  • Abdulla Rahil & Rupert Gammon, 2017. "Dispatchable Hydrogen Production at the Forecourt for Electricity Demand Shaping," Sustainability, MDPI, Open Access Journal, vol. 9(10), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1785-:d:113956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/10/1785/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/10/1785/
    Download Restriction: no

    References listed on IDEAS

    as
    1. El-Osta, W & Kalifa, Y, 2003. "Prospects of wind power plants in Libya: a case study," Renewable Energy, Elsevier, vol. 28(3), pages 363-371.
    2. Mansilla, C. & Louyrette, J. & Albou, S. & Bourasseau, C. & Dautremont, S., 2013. "Economic competitiveness of off-peak hydrogen production today – A European comparison," Energy, Elsevier, vol. 55(C), pages 996-1001.
    3. Pelaez-Samaniego, Manuel Raul & Riveros-Godoy, Gustavo & Torres-Contreras, Santiago & Garcia-Perez, Tsai & Albornoz-Vintimilla, Esteban, 2014. "Production and use of electrolytic hydrogen in Ecuador towards a low carbon economy," Energy, Elsevier, vol. 64(C), pages 626-631.
    4. Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez, 2013. "An investigation into the current utilisation and prospective of renewable energy resources and technologies in Libya," Renewable Energy, Elsevier, vol. 50(C), pages 732-740.
    5. Johansson, Daniella & Franck, Per-Åke & Berntsson, Thore, 2012. "Hydrogen production from biomass gasification in the oil refining industry – A system analysis," Energy, Elsevier, vol. 38(1), pages 212-227.
    6. González, A. & McKeogh, E. & Gallachóir, B.Ó., 2004. "The role of hydrogen in high wind energy penetration electricity systems: The Irish case," Renewable Energy, Elsevier, vol. 29(4), pages 471-489.
    7. Caumon, Pauline & Lopez-Botet Zulueta, Miguel & Louyrette, Jérémy & Albou, Sandrine & Bourasseau, Cyril & Mansilla, Christine, 2015. "Flexible hydrogen production implementation in the French power system: Expected impacts at the French and European levels," Energy, Elsevier, vol. 81(C), pages 556-562.
    8. Menanteau, P. & Quéméré, M.M. & Le Duigou, A. & Le Bastard, S., 2011. "An economic analysis of the production of hydrogen from wind-generated electricity for use in transport applications," Energy Policy, Elsevier, vol. 39(5), pages 2957-2965, May.
    9. El-Osta, W. & Zeghlam, J., 2000. "Hydrogen as a fuel for the transportation sector: possibilities and views for future applications in Libya," Applied Energy, Elsevier, vol. 65(1-4), pages 165-171, April.
    10. dos Santos, Kenia Gabriela & Eckert, Caroline Thaís & De Rossi, Eduardo & Bariccatti, Reinaldo Aparecido & Frigo, Elisandro Pires & Lindino, Cleber Antonio & Alves, Helton José, 2017. "Hydrogen production in the electrolysis of water in Brazil, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 563-571.
    11. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahil, Abdulla & Gammon, Rupert & Brown, Neil, 2018. "Flexible operation of electrolyser at the garage forecourt to support grid balancing and exploitation of hydrogen as a clean fuel," Research in Transportation Economics, Elsevier, vol. 70(C), pages 125-138.

    More about this item

    Keywords

    hydrogen refuelling station; renewable energy; demand-side response;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1785-:d:113956. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.