IDEAS home Printed from
   My bibliography  Save this article

An investigation into the current utilisation and prospective of renewable energy resources and technologies in Libya


  • Mohamed, Ahmed M.A.
  • Al-Habaibeh, Amin
  • Abdo, Hafez


With the increase in energy demand and the international drive to reduce carbon emission from fossil fuel, there has been a drive in many oil-rich countries to diversify their energy portfolio and resources. Libya is currently interested in utilising its renewable energy resources in order to reduce the financial and energy dependency on oil reserves. This paper investigates the current utilisation and the future of renewable energy in Libya. Interviews have been conducted with managers, consultants and decision makers from different government organisations including energy policy makers, energy generation companies and major energy consumers. The results indicate that Libya is rich in renewable energy resources but in urgent need of a more comprehensive energy strategy and detailed implementation including reasonable financial and educational investment in the renewable energy sector.

Suggested Citation

  • Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez, 2013. "An investigation into the current utilisation and prospective of renewable energy resources and technologies in Libya," Renewable Energy, Elsevier, vol. 50(C), pages 732-740.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:732-740
    DOI: 10.1016/j.renene.2012.07.038

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. El-Osta, W & Kalifa, Y, 2003. "Prospects of wind power plants in Libya: a case study," Renewable Energy, Elsevier, vol. 28(3), pages 363-371.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Belgasim, Basim & Aldali, Yasser & Abdunnabi, Mohammad J.R. & Hashem, Gamal & Hossin, Khaled, 2018. "The potential of concentrating solar power (CSP) for electricity generation in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1-15.
    2. Gabbasa, Mohamed & Sopian, Kamaruzzaman & Yaakob, Zahira & Faraji Zonooz, M.Reza & Fudholi, Ahmad & Asim, Nilofar, 2013. "Review of the energy supply status for sustainable development in the Organization of Islamic Conference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 18-28.
    3. Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez & Elabar, Sherifa, 2015. "Towards exporting renewable energy from MENA region to Europe: An investigation into domestic energy use and householders’ energy behaviour in Libya," Applied Energy, Elsevier, vol. 146(C), pages 247-262.
    4. Dragan Pamučar & Ibrahim Badi & Korica Sanja & Radojko Obradović, 2018. "A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya," Energies, MDPI, Open Access Journal, vol. 11(9), pages 1-1, September.
    5. Youssef Kassem & Hüseyin Çamur & Ramzi Aateg Faraj Aateg, 2020. "Exploring Solar and Wind Energy as a Power Generation Source for Solving the Electricity Crisis in Libya," Energies, MDPI, Open Access Journal, vol. 13(14), pages 1-1, July.
    6. Monaem Elmnifi & Moneer Amhamed & Naji Abdelwanis & Otman Imrayed, 2018. "Solar Supported Steam Production For Power Generation In Libya," Acta Mechanica Malaysia (AMM), Zibeline International Publishing, vol. 1(2), pages 5-9, February.
    7. Rahil, Abdulla & Gammon, Rupert & Brown, Neil, 2018. "Flexible operation of electrolyser at the garage forecourt to support grid balancing and exploitation of hydrogen as a clean fuel," Research in Transportation Economics, Elsevier, vol. 70(C), pages 125-138.
    8. Abdulla Rahil & Rupert Gammon, 2017. "Dispatchable Hydrogen Production at the Forecourt for Electricity Demand Shaping," Sustainability, MDPI, Open Access Journal, vol. 9(10), pages 1-1, October.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:732-740. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.