IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3708-d386498.html
   My bibliography  Save this article

Exploring Solar and Wind Energy as a Power Generation Source for Solving the Electricity Crisis in Libya

Author

Listed:
  • Youssef Kassem

    (Department of Mechanical Engineering, Faculty of Engineering, Near East University, 99138 Nicosia (via Mersin 10, Turkey), Cyprus
    Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Near East University, 99138 Nicosia (via Mersin 10, Turkey), Cyprus)

  • Hüseyin Çamur

    (Department of Mechanical Engineering, Faculty of Engineering, Near East University, 99138 Nicosia (via Mersin 10, Turkey), Cyprus)

  • Ramzi Aateg Faraj Aateg

    (Department of Mechanical Engineering, Faculty of Engineering, Near East University, 99138 Nicosia (via Mersin 10, Turkey), Cyprus)

Abstract

The current study is focused on the economic and financial assessments of solar and wind power potential for nine selected regions in Libya for the first time. As the existing meteorological data, including wind speed and global solar radiation, are extremely limited due to the civil war in the country, it was therefore decided to use the NASA (National Aeronautics and Space Administration) database as a source of meteorological information to assess the wind and solar potential. The results showed that the country has huge solar energy potential compared to wind energy potential. Additionally, it is found that Al Kufrah is a suitable region for the future installation of the Photovoltaic (PV) power plant due to high annual solar radiation. Based on the actual wind speed analysis, Benghazi and Dernah are the best regions for large-scale wind farm installation in the future taking into account existing meteorological data limitations. The values of the wind power density in all regions are considerable and small-scale wind turbines can be used to generate electricity based on NASA average monthly wind data for 37 years (1982–2019). Moreover, this work aimed to evaluate the wind/PV systems technical and economically through RETScreen Expert (Version 6.0, CanmetENERGY Varennes Research Centre of Natural Resources Canada, Varennes, Canada). Focusing on the power supply crisis in the country, the potential of electricity production by 5 kW grid-connected residential/household rooftop PV in all regions is proposed and presented. Additionally, this paper evaluated a techno-economic analysis of the 50MW wind/PV system in suitable places. The performance of a 5 kW and 50 MW PV solar system with three PV technologies, namely mono-crystalline silicon, poly-crystalline silicon, and thin-film (CdTe), was also analyzed. The results demonstrated that the development of the wind/PV system in the selected regions is both technically and economically feasible. The outcomes of this study can help decision-makers in designing and installing PV power plants as an alternative source for the future.

Suggested Citation

  • Youssef Kassem & Hüseyin Çamur & Ramzi Aateg Faraj Aateg, 2020. "Exploring Solar and Wind Energy as a Power Generation Source for Solving the Electricity Crisis in Libya," Energies, MDPI, vol. 13(14), pages 1-29, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3708-:d:386498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. EL-Shimy, M., 2009. "Viability analysis of PV power plants in Egypt," Renewable Energy, Elsevier, vol. 34(10), pages 2187-2196.
    2. M. Mujahid Rafique & Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems, 2018. "Feasibility of a 100 MW Installed Capacity Wind Farm for Different Climatic Conditions," Energies, MDPI, vol. 11(8), pages 1-18, August.
    3. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    4. Mohamad M. Alayat & Youssef Kassem & Hüseyin Çamur, 2018. "Assessment of Wind Energy Potential as a Power Generation Source: A Case Study of Eight Selected Locations in Northern Cyprus," Energies, MDPI, vol. 11(10), pages 1-22, October.
    5. El-Osta, W. & Belhag, M. & Klat, M. & Fallah, I. & Kalifa, Y., 1995. "Wind farm pilot project in Libya," Renewable Energy, Elsevier, vol. 6(5), pages 639-642.
    6. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    7. Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez, 2013. "An investigation into the current utilisation and prospective of renewable energy resources and technologies in Libya," Renewable Energy, Elsevier, vol. 50(C), pages 732-740.
    8. Irwanto, M. & Gomesh, N. & Mamat, M.R. & Yusoff, Y.M., 2014. "Assessment of wind power generation potential in Perlis, Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 296-308.
    9. Pishgar-Komleh, S.H. & Keyhani, A. & Sefeedpari, P., 2015. "Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 313-322.
    10. Mohammadi, Kasra & Naderi, Mahmoud & Saghafifar, Mohammad, 2018. "Economic feasibility of developing grid-connected photovoltaic plants in the southern coast of Iran," Energy, Elsevier, vol. 156(C), pages 17-31.
    11. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    12. Assowe Dabar, Omar & Awaleh, Mohamed Osman & Kirk-Davidoff, Daniel & Olauson, Jon & Söder, Lennart & Awaleh, Said Ismael, 2019. "Wind resource assessment and economic analysis for electricity generation in three locations of the Republic of Djibouti," Energy, Elsevier, vol. 185(C), pages 884-894.
    13. Chadee, Xsitaaz T. & Clarke, Ricardo M., 2018. "Wind resources and the levelized cost of wind generated electricity in the Caribbean islands of Trinidad and Tobago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2526-2540.
    14. Y. Aldali & D. Henderson & T. Muneer, 2011. "A 50 MW very large-scale photovoltaic power plant for Al-Kufra, Libya: energetic, economic and environmental impact analysis," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(4), pages 277-293, June.
    15. Youssef Kassem & Hüseyin Çamur & Salman Mohammed Awadh Alhuoti, 2020. "Solar Energy Technology for Northern Cyprus: Assessment, Statistical Analysis, and Feasibility Study," Energies, MDPI, vol. 13(4), pages 1-29, February.
    16. Al-Behadili, S.H. & El-Osta, W.B., 2015. "Life Cycle Assessment of Dernah (Libya) wind farm," Renewable Energy, Elsevier, vol. 83(C), pages 1227-1233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    2. Hamza S. Abdalla Lagili & Aşkın Kiraz & Youssef Kassem & Hüseyin Gökçekuş, 2023. "Wind and Solar Energy for Sustainable Energy Production for Family Farms in Coastal Agricultural Regions of Libya Using Measured and Multiple Satellite Datasets," Energies, MDPI, vol. 16(18), pages 1-53, September.
    3. Nalini Dookie & Xsitaaz T. Chadee & Ricardo M. Clarke, 2022. "A Prefeasibility Solar Photovoltaic Tool for Tropical Small Island Developing States," Energies, MDPI, vol. 15(22), pages 1-28, November.
    4. Abdulgader Alsharif & Chee Wei Tan & Razman Ayop & Ahmed Al Smin & Abdussalam Ali Ahmed & Farag Hamed Kuwil & Mohamed Mohamed Khaleel, 2023. "Impact of Electric Vehicle on Residential Power Distribution Considering Energy Management Strategy and Stochastic Monte Carlo Algorithm," Energies, MDPI, vol. 16(3), pages 1-22, January.
    5. Youssef Kassem & Hüseyin Gökçekuş & Ali Güvensoy, 2021. "Techno-Economic Feasibility of Grid-Connected Solar PV System at Near East University Hospital, Northern Cyprus," Energies, MDPI, vol. 14(22), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamza S. Abdalla Lagili & Aşkın Kiraz & Youssef Kassem & Hüseyin Gökçekuş, 2023. "Wind and Solar Energy for Sustainable Energy Production for Family Farms in Coastal Agricultural Regions of Libya Using Measured and Multiple Satellite Datasets," Energies, MDPI, vol. 16(18), pages 1-53, September.
    2. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    3. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    4. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    5. Rabbani, Rabab & Zeeshan, Muhammad, 2022. "Impact of policy changes on financial viability of wind power plants in Pakistan," Renewable Energy, Elsevier, vol. 193(C), pages 789-806.
    6. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Farabi-Asl, Hadi, 2018. "A comprehensive approach for wind power plant potential assessment, application to northwestern Iran," Energy, Elsevier, vol. 164(C), pages 344-358.
    7. Almaktar, Mohamed & Shaaban, Mohamed, 2021. "Prospects of renewable energy as a non-rivalry energy alternative in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2020. "Evaluation of Wind Energy Potential Using an Optimum Approach based on Maximum Distance Metric," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    9. Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
    10. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2020. "Wind energy potential and economic analysis with a comparison of different methods for determining the optimal distribution parameters," Renewable Energy, Elsevier, vol. 161(C), pages 1092-1109.
    11. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    12. Rabbani, R. & Zeeshan, M., 2020. "Exploring the suitability of MERRA-2 reanalysis data for wind energy estimation, analysis of wind characteristics and energy potential assessment for selected sites in Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 1240-1251.
    13. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    14. Minaeian, Ali & Sedaghat, Ahmad & Mostafaeipour, Ali & Akbar Alemrajabi, Ali, 2017. "Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 835-847.
    15. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    16. Slocum, Alexander H. & Gessel, David J., 2022. "Evolving from a hydrocarbon-based to a sustainable economy: Starting with a case study for Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Li, Yi & Wu, Xiao-Peng & Li, Qiu-Sheng & Tee, Kong Fah, 2018. "Assessment of onshore wind energy potential under different geographical climate conditions in China," Energy, Elsevier, vol. 152(C), pages 498-511.
    18. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    19. Youssef Kassem & Hüseyin Çamur & Salman Mohammed Awadh Alhuoti, 2020. "Solar Energy Technology for Northern Cyprus: Assessment, Statistical Analysis, and Feasibility Study," Energies, MDPI, vol. 13(4), pages 1-29, February.
    20. Katal, Fatemeh & Fazelpour, Farivar, 2018. "Multi-criteria evaluation and priority analysis of different types of existing power plants in Iran: An optimized energy planning system," Renewable Energy, Elsevier, vol. 120(C), pages 163-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3708-:d:386498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.