IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12720-d681177.html
   My bibliography  Save this article

A Novel 10 kW Vertical Axis Wind Tree Design: Economic Feasibility Assessment

Author

Listed:
  • Duong Minh Ngoc

    (Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand
    Faculty of Economics, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam)

  • Kuaanan Techato

    (Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand
    Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand
    Program of Sustainable Energy Management, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand)

  • Le Duc Niem

    (Faculty of Economics, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam)

  • Nguyen Thi Hai Yen

    (Faculty of Economics, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam)

  • Nguyen Van Dat

    (Faculty of Economics, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam)

  • Montri Luengchavanon

    (Sustainable Energy Management Program, Wind Energy and Energy Storage Centre (WEESYC), Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand)

Abstract

A novel, small-scale vertical axis wind turbine tree was designed using turbines combining both Darrieus and Savonius blades. We tested for economic viability using wind data collected at a site in Surat Thani, Thailand. The Weibull distribution and Monte Carlo modeling with financial indices (Levelized Cost of Electricity (LCOE), Net Present Value (NPV), Internal Rate of Return (IRR), and Simple Payback Period (SPP)) were used to analyze data. We found that monthly mean wind speeds varied from 2.35 m/s in October to 2.84 m/s in February, corresponding to a wind power of 28.43 W/m 2 and 42.68 W/m 2 . The average annual power output was 1446.1 kWh for May 2019 to April 2021. Results show that for turbine cut-in to cut-out speeds (2 m/s to 15 m/s), the prototype has potential economic feasibility (NPV > 0 for 64.93%), although the small capacity of the wind tree, in combination with the low average wind speed at the Surat Thani test site, showed a lack of economic viability at this specific location (NPV = USD − 20,946.29). A higher-wind-speed location (Chiang Mai) showed viability, especially at a 10 m height (NPV > 0 for 84.83%). We discuss potential conditions that would make broader use of the prototype feasible.

Suggested Citation

  • Duong Minh Ngoc & Kuaanan Techato & Le Duc Niem & Nguyen Thi Hai Yen & Nguyen Van Dat & Montri Luengchavanon, 2021. "A Novel 10 kW Vertical Axis Wind Tree Design: Economic Feasibility Assessment," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12720-:d:681177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12720/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rocha, Luiz Célio Souza & Aquila, Giancarlo & Rotela Junior, Paulo & Paiva, Anderson Paulo de & Pamplona, Edson de Oliveira & Balestrassi, Pedro Paulo, 2018. "A stochastic economic viability analysis of residential wind power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 412-419.
    2. Pookpunt, Sittichoke & Ongsakul, Weerakorn, 2013. "Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients," Renewable Energy, Elsevier, vol. 55(C), pages 266-276.
    3. Jamil, M. & Parsa, S. & Majidi, M., 1995. "Wind power statistics and an evaluation of wind energy density," Renewable Energy, Elsevier, vol. 6(5), pages 623-628.
    4. Belabes, B. & Youcefi, A. & Guerri, O. & Djamai, M. & Kaabeche, A., 2015. "Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1245-1255.
    5. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    6. Saeidi, Davood & Sedaghat, Ahmad & Alamdari, Pourya & Alemrajabi, Ali Akbar, 2013. "Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines," Applied Energy, Elsevier, vol. 101(C), pages 765-775.
    7. Diaf, S. & Notton, G., 2013. "Technical and economic analysis of large-scale wind energy conversion systems in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 37-51.
    8. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    9. Ko, Dong Hui & Jeong, Shin Taek & Kim, Yoon Chil, 2015. "Assessment of wind energy for small-scale wind power in Chuuk State, Micronesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 613-622.
    10. Mostafaeipour, A. & Sedaghat, A. & Dehghan-Niri, A.A. & Kalantar, V., 2011. "Wind energy feasibility study for city of Shahrbabak in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2545-2556, August.
    11. Barnes, Andrew & Hughes, Ben, 2019. "Determining the impact of VAWT farm configurations on power output," Renewable Energy, Elsevier, vol. 143(C), pages 1111-1120.
    12. Muche, Thomas & Pohl, Ralf & Höge, Christin, 2016. "Economically optimal configuration of onshore horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 90(C), pages 469-480.
    13. Olatayo, Kunle Ibukun & Wichers, J. Harry & Stoker, Piet W., 2018. "Energy and economic performance of small wind energy systems under different climatic conditions of South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 376-392.
    14. Khraiwish Dalabeeh, Ali S., 2017. "Techno-economic analysis of wind power generation for selected locations in Jordan," Renewable Energy, Elsevier, vol. 101(C), pages 1369-1378.
    15. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    16. Gökçek, Murat & Genç, Mustafa Serdar, 2009. "Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey," Applied Energy, Elsevier, vol. 86(12), pages 2731-2739, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    2. Duong Minh Ngoc & Montri Luengchavanon & Pham Thi Anh & Kim Humphreys & Kuaanan Techato, 2022. "Shades of Green: Life Cycle Assessment of a Novel Small-Scale Vertical Axis Wind Turbine Tree," Energies, MDPI, vol. 15(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    2. Chadee, Xsitaaz T. & Clarke, Ricardo M., 2018. "Wind resources and the levelized cost of wind generated electricity in the Caribbean islands of Trinidad and Tobago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2526-2540.
    3. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    4. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    5. Soulouknga, M.H. & Doka, S.Y. & N.Revanna, & N.Djongyang, & T.C.Kofane,, 2018. "Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution," Renewable Energy, Elsevier, vol. 121(C), pages 1-8.
    6. Suzer, Ahmet Esat & Atasoy, Vehbi Emrah & Ekici, Selcuk, 2021. "Developing a holistic simulation approach for parametric techno-economic analysis of wind energy," Energy Policy, Elsevier, vol. 149(C).
    7. Tiang, Tow Leong & Ishak, Dahaman, 2012. "Technical review of wind energy potential as small-scale power generation sources in Penang Island Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3034-3042.
    8. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    9. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    10. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    11. Minaeian, Ali & Sedaghat, Ahmad & Mostafaeipour, Ali & Akbar Alemrajabi, Ali, 2017. "Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 835-847.
    12. Mostafaeipour, Ali & Sedaghat, Ahmad & Ghalishooyan, Morteza & Dinpashoh, Yagob & Mirhosseini, Mojtaba & Sefid, Mohammad & Pour-Rezaei, Maryam, 2013. "Evaluation of wind energy potential as a power generation source for electricity production in Binalood, Iran," Renewable Energy, Elsevier, vol. 52(C), pages 222-229.
    13. Bahrami, Arian & Teimourian, Amir & Okoye, Chiemeka Onyeka & Khosravi, Nima, 2019. "Assessing the feasibility of wind energy as a power source in Turkmenistan; a major opportunity for Central Asia's energy market," Energy, Elsevier, vol. 183(C), pages 415-427.
    14. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    15. Bilal, Boudy & Adjallah, Kondo Hloindo & Yetilmezsoy, Kaan & Bahramian, Majid & Kıyan, Emel, 2021. "Determination of wind potential characteristics and techno-economic feasibility analysis of wind turbines for Northwest Africa," Energy, Elsevier, vol. 218(C).
    16. Diaf, S. & Notton, G., 2013. "Technical and economic analysis of large-scale wind energy conversion systems in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 37-51.
    17. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    18. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    19. Youssef Kassem & Hüseyin Çamur & Ramzi Aateg Faraj Aateg, 2020. "Exploring Solar and Wind Energy as a Power Generation Source for Solving the Electricity Crisis in Libya," Energies, MDPI, vol. 13(14), pages 1-29, July.
    20. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12720-:d:681177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.