IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10892-d903302.html
   My bibliography  Save this article

Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca

Author

Listed:
  • Ciprian Cristea

    (Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 26-28 G., Barițiu Street, 400027 Cluj-Napoca, Romania)

  • Maria Cristea

    (Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 26-28 G., Barițiu Street, 400027 Cluj-Napoca, Romania)

  • Dan Doru Micu

    (Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 26-28 G., Barițiu Street, 400027 Cluj-Napoca, Romania)

  • Andrei Ceclan

    (Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 26-28 G., Barițiu Street, 400027 Cluj-Napoca, Romania)

  • Radu-Adrian Tîrnovan

    (Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 26-28 G., Barițiu Street, 400027 Cluj-Napoca, Romania)

  • Florica Mioara Șerban

    (Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 26-28 G., Barițiu Street, 400027 Cluj-Napoca, Romania)

Abstract

Nowadays, as the technology behind solar photovoltaic systems has been significantly improved, along with a significant decrease in costs, grid-connected photovoltaic systems are becoming an important option to reach a low-carbon energy transition. The high cost of electricity consumed at the Technical University of Cluj-Napoca represented a good reason for the university to increase its energy efficiency by adopting and increasing energy consumption from renewable energy sources. This paper assesses the technical, economic, and environmental feasibility of deploying four photovoltaic systems at the aforementioned university situated in the Northwestern part of Romania, according to the Romanian renewable energy legislation. PVSOL software has been used to estimate the performance of photovoltaic installations. The results indicated that the most viable distributed generation system is the one with a capacity of 100 kW, meeting approximately 23 percent of university electricity needs, and at the same time, reducing carbon dioxide emissions by approximately 460 tons. A sensitivity analysis has been performed to evaluate the effect of several critical parameters on the PV system’s economic feasibility. The results provide valuable decision-making information regarding the buildings’ solar potential for other universities, supporting the transition to solar energy.

Suggested Citation

  • Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10892-:d:903302
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10892/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Aili & Wang, Shunsheng & Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood & Moghadam, Ali Jabari, 2022. "Techno-economic and techno-environmental assessment and multi-objective optimization of a new CCHP system based on waste heat recovery from regenerative Brayton cycle," Energy, Elsevier, vol. 241(C).
    2. Jefferson, Michael, 2006. "Sustainable energy development: performance and prospects," Renewable Energy, Elsevier, vol. 31(5), pages 571-582.
    3. Rohan Zafar Butt & Syed Ali Abbas Kazmi & Mohammed Alghassab & Zafar A. Khan & Abdullah Altamimi & Muhammad Imran & Fahad F. Alruwaili, 2022. "Techno-Economic and Environmental Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Mid-Career Repowering Perspective," Sustainability, MDPI, vol. 14(5), pages 1-31, February.
    4. Bahaidarah, Haitham M. & Tanweer, Bilal & Gandhidasan, P. & Ibrahim, Nasiru & Rehman, Shafiqur, 2014. "Experimental and numerical study on non-concentrating and symmetric unglazed compound parabolic photovoltaic concentration systems," Applied Energy, Elsevier, vol. 136(C), pages 527-536.
    5. Dehwah, Ammar H.A. & Asif, Muhammad, 2019. "Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates," Renewable Energy, Elsevier, vol. 131(C), pages 1288-1299.
    6. Wang, Yue & Das, Ridoy & Putrus, Ghanim & Kotter, Richard, 2020. "Economic evaluation of photovoltaic and energy storage technologies for future domestic energy systems – A case study of the UK," Energy, Elsevier, vol. 203(C).
    7. Cristea, Ciprian & Cristea, Maria & Birou, Iulian & Tîrnovan, Radu-Adrian, 2020. "Economic assessment of grid-connected residential solar photovoltaic systems introduced under Romania’s new regulation," Renewable Energy, Elsevier, vol. 162(C), pages 13-29.
    8. Lau, K.Y. & Muhamad, N.A. & Arief, Y.Z. & Tan, C.W. & Yatim, A.H.M., 2016. "Grid-connected photovoltaic systems for Malaysian residential sector: Effects of component costs, feed-in tariffs, and carbon taxes," Energy, Elsevier, vol. 102(C), pages 65-82.
    9. Lee, Jongsung & Chang, Byungik & Aktas, Can & Gorthala, Ravi, 2016. "Economic feasibility of campus-wide photovoltaic systems in New England," Renewable Energy, Elsevier, vol. 99(C), pages 452-464.
    10. Pathomthat Chiradeja & Atthapol Ngaopitakkul, 2019. "Energy and Economic Analysis of Tropical Building Envelope Material in Compliance with Thailand’s Building Energy Code," Sustainability, MDPI, vol. 11(23), pages 1-23, December.
    11. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.
    12. Duong Minh Ngoc & Kuaanan Techato & Le Duc Niem & Nguyen Thi Hai Yen & Nguyen Van Dat & Montri Luengchavanon, 2021. "A Novel 10 kW Vertical Axis Wind Tree Design: Economic Feasibility Assessment," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    13. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    14. Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
    15. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    16. Olivieri, Lorenzo & Caamaño-Martín, Estefanía & Sassenou, Louise-Nour & Olivieri, Francesca, 2020. "Contribution of photovoltaic distributed generation to the transition towards an emission-free supply to university campus: technical, economic feasibility and carbon emission reduction at the Univers," Renewable Energy, Elsevier, vol. 162(C), pages 1703-1714.
    17. Sepúlveda-Mora, Sergio B. & Hegedus, Steven, 2021. "Making the case for time-of-use electric rates to boost the value of battery storage in commercial buildings with grid connected PV systems," Energy, Elsevier, vol. 218(C).
    18. Chatterjee, Shantanu & Kumar, Prashant & Chatterjee, Saibal, 2018. "A techno-commercial review on grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2371-2397.
    19. Zweibel, Ken, 2010. "Should solar photovoltaics be deployed sooner because of long operating life at low, predictable cost?," Energy Policy, Elsevier, vol. 38(11), pages 7519-7530, November.
    20. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    21. Francesco Fuso Nerini & Julia Tomei & Long Seng To & Iwona Bisaga & Priti Parikh & Mairi Black & Aiduan Borrion & Catalina Spataru & Vanesa Castán Broto & Gabrial Anandarajah & Ben Milligan & Yacob Mu, 2018. "Mapping synergies and trade-offs between energy and the Sustainable Development Goals," Nature Energy, Nature, vol. 3(1), pages 10-15, January.
    22. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.
    23. Rodrigues, Sandy & Chen, Xiaoju & Morgado-Dias, F., 2017. "Economic analysis of photovoltaic systems for the residential market under China's new regulation," Energy Policy, Elsevier, vol. 101(C), pages 467-472.
    24. Allen, Cameron & Metternicht, Graciela & Wiedmann, Thomas, 2016. "National pathways to the Sustainable Development Goals (SDGs): A comparative review of scenario modelling tools," Environmental Science & Policy, Elsevier, vol. 66(C), pages 199-207.
    25. Laib, I. & Hamidat, A. & Haddadi, M. & Ramzan, N. & Olabi, A.G., 2018. "Study and simulation of the energy performances of a grid-connected PV system supplying a residential house in north of Algeria," Energy, Elsevier, vol. 152(C), pages 445-454.
    26. Paudel, Ananda Mani & Sarper, Hűseyin, 2013. "Economic analysis of a grid-connected commercial photovoltaic system at Colorado State University-Pueblo," Energy, Elsevier, vol. 52(C), pages 289-296.
    27. Amrouche, Badia & Guessoum, Abderrezak & Belhamel, Maiouf, 2012. "A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison," Applied Energy, Elsevier, vol. 91(1), pages 395-404.
    28. Kumar, Manish & Chandel, S.S. & Kumar, Arun, 2020. "Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions," Energy, Elsevier, vol. 204(C).
    29. Biglarian, Hassan & Abdollahi, Sina, 2022. "Utilization of on-grid photovoltaic panels to offset electricity consumption of a residential ground source heat pump," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristea, Ciprian & Cristea, Maria & Birou, Iulian & Tîrnovan, Radu-Adrian, 2020. "Economic assessment of grid-connected residential solar photovoltaic systems introduced under Romania’s new regulation," Renewable Energy, Elsevier, vol. 162(C), pages 13-29.
    2. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    3. Yousef Alharbi & Ahmed Darwish & Xiandong Ma, 2023. "A Comprehensive Review of Distributed MPPT for Grid-Tied PV Systems at the Sub-Module Level," Energies, MDPI, vol. 16(14), pages 1-23, July.
    4. Abraham Alem Kebede & Maitane Berecibar & Thierry Coosemans & Maarten Messagie & Towfik Jemal & Henok Ayele Behabtu & Joeri Van Mierlo, 2020. "A Techno-Economic Optimization and Performance Assessment of a 10 kW P Photovoltaic Grid-Connected System," Sustainability, MDPI, vol. 12(18), pages 1-29, September.
    5. Emmanuel, Michael & Akinyele, Daniel & Rayudu, Ramesh, 2017. "Techno-economic analysis of a 10 kWp utility interactive photovoltaic system at Maungaraki school, Wellington, New Zealand," Energy, Elsevier, vol. 120(C), pages 573-583.
    6. Mohammed Basheer & Victor Nechifor & Alvaro Calzadilla & Claudia Ringler & David Hulme & Julien J. Harou, 2022. "Balancing national economic policy outcomes for sustainable development," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Paul Mansell & Simon P. Philbin & Efrosyni Konstantinou, 2020. "Redefining the Use of Sustainable Development Goals at the Organisation and Project Levels—A Survey of Engineers," Administrative Sciences, MDPI, vol. 10(3), pages 1-39, August.
    8. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    9. Hassan, Masood Ul & Saha, Sajeeb & Haque, Md Enamul, 2021. "PVAnalytX: A MATLAB toolkit for techno-economic analysis and performance evaluation of rooftop PV systems," Energy, Elsevier, vol. 223(C).
    10. Seung Hyo Baek & Byung Hee Lee, 2019. "Optimal Decision-Making of Renewable Energy Systems in Buildings in the Early Design Stage," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    11. Duman, A. Can & Güler, Önder, 2020. "Economic analysis of grid-connected residential rooftop PV systems in Turkey," Renewable Energy, Elsevier, vol. 148(C), pages 697-711.
    12. Xin-gang, Zhao & Yi-min, Xie, 2019. "The economic performance of industrial and commercial rooftop photovoltaic in China," Energy, Elsevier, vol. 187(C).
    13. Minkyu Kim & Chankook Park, 2021. "Academic Topics Related to Household Energy Consumption Using the Future Sign Detection Technique," Energies, MDPI, vol. 14(24), pages 1-24, December.
    14. Ammar Hamoud Ahmad Dehwah & Muhammad Asif & Ismail Mohammad Budaiwi & Adel Alshibani, 2020. "Techno-Economic Assessment of Rooftop PV Systems in Residential Buildings in Hot–Humid Climates," Sustainability, MDPI, vol. 12(23), pages 1-19, December.
    15. Rehman, Shafiqur & Ahmed, M.A. & Mohamed, Mohand H. & Al-Sulaiman, Fahad A., 2017. "Feasibility study of the grid connected 10MW installed capacity PV power plants in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 319-329.
    16. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    17. Hemal Chowdhury & Tamal Chowdhury & Ayyoob Sharifi & Richard Corkish & Sadiq M. Sait, 2022. "Role of Biogas in Achieving Sustainable Development Goals in Rohingya Refugee Camps in Bangladesh," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    18. Hossain, A.K. & Thorpe, R. & Vasudevan, P. & Sen, P.K. & Critoph, R.E. & Davies, P.A., 2013. "Omnigen: Providing electricity, food preparation, cold storage and pure water using a variety of local fuels," Renewable Energy, Elsevier, vol. 49(C), pages 197-202.
    19. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    20. Simona-Vasilica Oprea & Adela Bâra & Florina Camelia Puican & Ioan Cosmin Radu, 2021. "Anomaly Detection with Machine Learning Algorithms and Big Data in Electricity Consumption," Sustainability, MDPI, vol. 13(19), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10892-:d:903302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.