IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7648-d414419.html
   My bibliography  Save this article

A Techno-Economic Optimization and Performance Assessment of a 10 kW P Photovoltaic Grid-Connected System

Author

Listed:
  • Abraham Alem Kebede

    (Mobility, Logistics and Automotive Technology Research Center, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium
    Department of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University, Jimma 378, Ethiopia)

  • Maitane Berecibar

    (Mobility, Logistics and Automotive Technology Research Center, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium)

  • Thierry Coosemans

    (Mobility, Logistics and Automotive Technology Research Center, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium)

  • Maarten Messagie

    (Mobility, Logistics and Automotive Technology Research Center, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium)

  • Towfik Jemal

    (Department of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University, Jimma 378, Ethiopia)

  • Henok Ayele Behabtu

    (Mobility, Logistics and Automotive Technology Research Center, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium
    Department of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University, Jimma 378, Ethiopia)

  • Joeri Van Mierlo

    (Mobility, Logistics and Automotive Technology Research Center, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium)

Abstract

The system under consideration in this paper consists of a photovoltaic (PV) array, described as having a 10 kWp capacity, battery storage, and connection to the grid via a university grid network. It is stated that the system meets a local load of 4–5 kVA. The system is in Ethiopia, and the authors give details of the location and solar resource to provide information to assess its performance. However, the performance assessment will be specific to the details of the installation and the operational rules, including the variable nature of the load profile, charging and discharging the battery storage, and importing from and exporting to the university grid. The nearby load is mostly supplied from PV and grid sources, and hence the battery installed is found to be idle, showing that the PV together with storage battery system was not utilized in an efficient and optimized way. This in turn resulted in inefficient utilization of sources, increased dependency of the load on the grid, and hence unnecessary operational expenses. Therefore, to alleviate these problems, this paper proposes a means for techno-economic optimization and performance analysis of an existing photovoltaic grid-connected system (PVGCS) by using collected data from a plant data logger for one year (2018) with a model-based Matlab/Simulink simulation and a hybrid optimization model for electric renewables (HOMER) software. According to the simulation result, the PVGCS with 5 kWp PV array optimized system was recommended, which provides a net present cost (NPC) of 5770 (€/kWh), and a cost of energy (COE) of 0.087 (€/kWh) compared to an existing 10 kWp PV system, which results in a NPC value of 6047 (€/kWh) and COE of 0.098 (€/kWh). Therefore, the resulting 5 kWp PV system connected with a storage battery was found to be more efficient and techno-economically viable as compared to the existing 10 kWp PVGCS plant.

Suggested Citation

  • Abraham Alem Kebede & Maitane Berecibar & Thierry Coosemans & Maarten Messagie & Towfik Jemal & Henok Ayele Behabtu & Joeri Van Mierlo, 2020. "A Techno-Economic Optimization and Performance Assessment of a 10 kW P Photovoltaic Grid-Connected System," Sustainability, MDPI, vol. 12(18), pages 1-29, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7648-:d:414419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Sabounchi, Ammar M. & Yalyali, Saeed A. & Al-Thani, Hamda A., 2013. "Design and performance evaluation of a photovoltaic grid-connected system in hot weather conditions," Renewable Energy, Elsevier, vol. 53(C), pages 71-78.
    2. Eltawil, Mohamed A. & Zhao, Zhengming, 2010. "Grid-connected photovoltaic power systems: Technical and potential problems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 112-129, January.
    3. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Luca Cedola, 2019. "Performance and Economic Assessment of a Grid-Connected Photovoltaic Power Plant with a Storage System: A Comparison between the North and the South of Italy," Energies, MDPI, vol. 12(12), pages 1-25, June.
    4. Orioli, Aldo & Di Gangi, Alessandra, 2016. "Five-years-long effects of the Italian policies for photovoltaics on the energy demand coverage of grid-connected PV systems installed in urban contexts," Energy, Elsevier, vol. 113(C), pages 444-460.
    5. Emmanuel, Michael & Akinyele, Daniel & Rayudu, Ramesh, 2017. "Techno-economic analysis of a 10 kWp utility interactive photovoltaic system at Maungaraki school, Wellington, New Zealand," Energy, Elsevier, vol. 120(C), pages 573-583.
    6. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    7. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    8. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    9. Lau, K.Y. & Muhamad, N.A. & Arief, Y.Z. & Tan, C.W. & Yatim, A.H.M., 2016. "Grid-connected photovoltaic systems for Malaysian residential sector: Effects of component costs, feed-in tariffs, and carbon taxes," Energy, Elsevier, vol. 102(C), pages 65-82.
    10. Nge, Chee Lim & Ranaweera, Iromi U. & Midtgård, Ole-Morten & Norum, Lars, 2019. "A real-time energy management system for smart grid integrated photovoltaic generation with battery storage," Renewable Energy, Elsevier, vol. 130(C), pages 774-785.
    11. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    12. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.
    13. Sharma, Pooja & Kolhe, Mohan & Sharma, Arvind, 2020. "Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints," Renewable Energy, Elsevier, vol. 145(C), pages 1901-1909.
    14. Jicheng Liu & Qiongjie Dai, 2020. "Portfolio Optimization of Photovoltaic/Battery Energy Storage/Electric Vehicle Charging Stations with Sustainability Perspective Based on Cumulative Prospect Theory and MOPSO," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    15. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Paend Bakht & Zainal Salam & Mehr Gul & Waqas Anjum & Mohamad Anuar Kamaruddin & Nuzhat Khan & Abba Lawan Bukar, 2022. "The Potential Role of Hybrid Renewable Energy System for Grid Intermittency Problem: A Techno-Economic Optimisation and Comparative Analysis," Sustainability, MDPI, vol. 14(21), pages 1-29, October.
    2. Henok Ayele Behabtu & Maarten Messagie & Thierry Coosemans & Maitane Berecibar & Kinde Anlay Fante & Abraham Alem Kebede & Joeri Van Mierlo, 2020. "A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    3. Henok Ayele Behabtu & Thierry Coosemans & Maitane Berecibar & Kinde Anlay Fante & Abraham Alem Kebede & Joeri Van Mierlo & Maarten Messagie, 2021. "Performance Evaluation of Grid-Connected Wind Turbine Generators," Energies, MDPI, vol. 14(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    2. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    3. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.
    5. Rehman, Shafiqur & Ahmed, M.A. & Mohamed, Mohand H. & Al-Sulaiman, Fahad A., 2017. "Feasibility study of the grid connected 10MW installed capacity PV power plants in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 319-329.
    6. Purohit, Ishan & Purohit, Pallav, 2018. "Performance assessment of grid-interactive solar photovoltaic projects under India’s national solar mission," Applied Energy, Elsevier, vol. 222(C), pages 25-41.
    7. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    8. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    9. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    10. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    11. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    12. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    13. Emmanuel, Michael & Akinyele, Daniel & Rayudu, Ramesh, 2017. "Techno-economic analysis of a 10 kWp utility interactive photovoltaic system at Maungaraki school, Wellington, New Zealand," Energy, Elsevier, vol. 120(C), pages 573-583.
    14. Kotarela, F. & Kyritsis, A. & Papanikolaou, N. & Kalogirou, S.A., 2021. "Enhanced nZEB concept incorporating a sustainable Grid Support Scheme," Renewable Energy, Elsevier, vol. 169(C), pages 714-725.
    15. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The post COVID-19 green recovery in practice: Assessing the profitability of a policy proposal on residential photovoltaic plants," Energy Policy, Elsevier, vol. 147(C).
    16. Isabel Santiago & David Trillo Montero & Juan J. Luna Rodríguez & Isabel M. Moreno Garcia & Emilio J. Palacios Garcia, 2017. "Graphical Diagnosis of Performances in Photovoltaic Systems: A Case Study in Southern Spain," Energies, MDPI, vol. 10(12), pages 1-26, November.
    17. Takele Ferede Agajie & Ahmed Ali & Armand Fopah-Lele & Isaac Amoussou & Baseem Khan & Carmen Lilí Rodríguez Velasco & Emmanuel Tanyi, 2023. "A Comprehensive Review on Techno-Economic Analysis and Optimal Sizing of Hybrid Renewable Energy Sources with Energy Storage Systems," Energies, MDPI, vol. 16(2), pages 1-26, January.
    18. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).
    19. Kumar, Pankaj & Pal, Nitai & Sharma, Himanshu, 2022. "Optimization and techno-economic analysis of a solar photo-voltaic/biomass/diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India," Energy, Elsevier, vol. 247(C).
    20. Irene Romero-Fiances & Emilio Muñoz-Cerón & Rafael Espinoza-Paredes & Gustavo Nofuentes & Juan De la Casa, 2019. "Analysis of the Performance of Various PV Module Technologies in Peru," Energies, MDPI, vol. 12(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7648-:d:414419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.