IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v101y2013icp765-775.html
   My bibliography  Save this article

Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines

Author

Listed:
  • Saeidi, Davood
  • Sedaghat, Ahmad
  • Alamdari, Pourya
  • Alemrajabi, Ali Akbar

Abstract

The growing demand for renewable energy with a sustainable and low-energy design is the main topic in many countries. This could indeed influence in utilizing small wind turbines which incorporate innovative designs and new materials of construction which may provide an attractive prospect of future applications of power production in the urban environment. In particular, H-rotor type vertical axis wind turbines (VAWTs) are considered as one of the most attractive solutions due to simplicity and ease of manufacturing. Optimized site-specific designs proved reductions in cost of energy by increasing in annual energy yield and a reduction in manufacturing costs. The greatest benefits were reported at sites with low mean wind speed and low turbulence. The terrain studied here is a site in Fadashk area in the province of south Khorasan in north east of Iran. The aim of this work is to design and optimize the site specific H-rotor type VAWT using the blade element momentum theory (BEM) and a double multiple stream tube model. The results of these analyses were then combined and synthesized for a 1.5kW H-rotor VAWT with NACA4415 airfoil sections. The economical feasibility of the designed VAWT is finally integrated in the design procedure to predict annual production of electricity. Based on current electricity costs that is 12cent per kWh in Iran for renewable energies, our evaluation shows a profit of 6cent per each kWh generated power by the designed VAWT.

Suggested Citation

  • Saeidi, Davood & Sedaghat, Ahmad & Alamdari, Pourya & Alemrajabi, Ali Akbar, 2013. "Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines," Applied Energy, Elsevier, vol. 101(C), pages 765-775.
  • Handle: RePEc:eee:appene:v:101:y:2013:i:c:p:765-775
    DOI: 10.1016/j.apenergy.2012.07.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912005697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.07.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mazandarani, A. & Mahlia, T.M.I. & Chong, W.T. & Moghavvemi, M., 2010. "A review on the pattern of electricity generation and emission in Iran from 1967 to 2008," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1814-1829, September.
    2. Kumbernuss, Jan & Jian, Chen & Wang, Junhua & Yang, H.X. & Fu, W.N., 2012. "A novel magnetic levitated bearing system for Vertical Axis Wind Turbines (VAWT)," Applied Energy, Elsevier, vol. 90(1), pages 148-153.
    3. Ponta, Fernando L. & Jacovkis, Pablo M., 2001. "A vortex model for Darrieus turbine using finite element techniques," Renewable Energy, Elsevier, vol. 24(1), pages 1-18.
    4. Eriksson, Sandra & Bernhoff, Hans & Leijon, Mats, 2008. "Evaluation of different turbine concepts for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1419-1434, June.
    5. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    6. Fleming, P.D. & Probert, S.D. & Arithoppah, S., 1983. "Do centre-bodies improve the performance of horizontal-axis, sail-type wind-turbines?," Applied Energy, Elsevier, vol. 14(2), pages 123-130.
    7. Fadai, Dawud, 2007. "The feasibility of manufacturing wind turbines in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 536-542, April.
    8. Audierne, Etienne & Elizondo, Jorge & Bergami, Leonardo & Ibarra, Humberto & Probst, Oliver, 2010. "Analysis of the furling behavior of small wind turbines," Applied Energy, Elsevier, vol. 87(7), pages 2278-2292, July.
    9. Bagheri Moghaddam, Nasser & Mousavi, Sayyed Moslem & Nasiri, Masoud & Moallemi, Enayat A. & Yousefdehi, Hami, 2011. "Wind energy status of Iran: Evaluating Iran's technological capability in manufacturing wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4200-4211.
    10. Islam, Mazharul & Ting, David S.-K. & Fartaj, Amir, 2008. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1087-1109, May.
    11. Kalantar, M. & Mousavi G., S.M., 2010. "Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage," Applied Energy, Elsevier, vol. 87(10), pages 3051-3064, October.
    12. Lu, Lin & Yang, Hongxing & Burnett, John, 2002. "Investigation on wind power potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics," Renewable Energy, Elsevier, vol. 27(1), pages 1-12.
    13. Saeidi, D. & Mirhosseini, M. & Sedaghat, A. & Mostafaeipour, A., 2011. "Feasibility study of wind energy potential in two provinces of Iran: North and South Khorasan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3558-3569.
    14. Fleming, P. D. & Probert, S. D., 1982. "Power augmentation of cheap, sail-type, horizontal-axis wind-turbines," Applied Energy, Elsevier, vol. 12(1), pages 53-70, September.
    15. Chong, W.T. & Naghavi, M.S. & Poh, S.C. & Mahlia, T.M.I. & Pan, K.C., 2011. "Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application," Applied Energy, Elsevier, vol. 88(11), pages 4067-4077.
    16. Tabassum, S.A. & Probert, S.D., 1987. "Vertical-axis wind turbine: A modified design," Applied Energy, Elsevier, vol. 28(1), pages 59-67.
    17. Mostafaeipour, A. & Sedaghat, A. & Dehghan-Niri, A.A. & Kalantar, V., 2011. "Wind energy feasibility study for city of Shahrbabak in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2545-2556, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    2. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    3. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    4. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    5. Batista, N.C. & Melício, R. & Mendes, V.M.F. & Calderón, M. & Ramiro, A., 2015. "On a self-start Darrieus wind turbine: Blade design and field tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 508-522.
    6. Hosseini, Seyed Ehsan & Andwari, Amin Mahmoudzadeh & Wahid, Mazlan Abdul & Bagheri, Ghobad, 2013. "A review on green energy potentials in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 533-545.
    7. Minaeian, Ali & Sedaghat, Ahmad & Mostafaeipour, Ali & Akbar Alemrajabi, Ali, 2017. "Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 835-847.
    8. Chong, W.T. & Poh, S.C. & Fazlizan, A. & Yip, S.Y. & Chang, C.K. & Hew, W.P., 2013. "Early development of an energy recovery wind turbine generator for exhaust air system," Applied Energy, Elsevier, vol. 112(C), pages 568-575.
    9. Mostafaeipour, Ali & Sedaghat, Ahmad & Ghalishooyan, Morteza & Dinpashoh, Yagob & Mirhosseini, Mojtaba & Sefid, Mohammad & Pour-Rezaei, Maryam, 2013. "Evaluation of wind energy potential as a power generation source for electricity production in Binalood, Iran," Renewable Energy, Elsevier, vol. 52(C), pages 222-229.
    10. Amirinia, Gholamreza & Kamranzad, Bahareh & Mafi, Somayeh, 2017. "Wind and wave energy potential in southern Caspian Sea using uncertainty analysis," Energy, Elsevier, vol. 120(C), pages 332-345.
    11. Alamdari, Pouria & Nematollahi, Omid & Alemrajabi, Ali Akbar, 2013. "Solar energy potentials in Iran: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 778-788.
    12. Hamdan, A. & Mustapha, F. & Ahmad, K.A. & Mohd Rafie, A.S., 2014. "A review on the micro energy harvester in Structural Health Monitoring (SHM) of biocomposite material for Vertical Axis Wind Turbine (VAWT) system: A Malaysia perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 23-30.
    13. Borg, Michael & Shires, Andrew & Collu, Maurizio, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. part I: Aerodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1214-1225.
    14. Malipeddi, A.R. & Chatterjee, D., 2012. "Influence of duct geometry on the performance of Darrieus hydroturbine," Renewable Energy, Elsevier, vol. 43(C), pages 292-300.
    15. Aslam Bhutta, Muhammad Mahmood & Hayat, Nasir & Farooq, Ahmed Uzair & Ali, Zain & Jamil, Sh. Rehan & Hussain, Zahid, 2012. "Vertical axis wind turbine – A review of various configurations and design techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1926-1939.
    16. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    17. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    18. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    20. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:101:y:2013:i:c:p:765-775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.