IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v90y2018icp412-419.html
   My bibliography  Save this article

A stochastic economic viability analysis of residential wind power generation in Brazil

Author

Listed:
  • Rocha, Luiz Célio Souza
  • Aquila, Giancarlo
  • Rotela Junior, Paulo
  • Paiva, Anderson Paulo de
  • Pamplona, Edson de Oliveira
  • Balestrassi, Pedro Paulo

Abstract

This study evaluates the stochastic economic viability of residential wind power generation in Brazil. Three scenarios representing different regions from Brazil were considered: high, low, and intermediate wind speed. For each scenario, 10,000 simulations were conducted using the Monte Carlo Simulation (MCS)11MCS: Monte Carlo Simulation; NPV: Net Present Value; ANEEL: National Agency of Electrical Energy; IEA: International Energy Agency; RES: Renewable Energy Sources; AEP: Annual Energy Production; WACC: Weighted Average Cost of Capital; CAPM: Capital Asset Pricing Model; CAS: Constant Amortization System. method to obtain possible Net Present Values (NPV) for a project. The sensitivity analysis revealed that wind speed and investment are essential for the viability of this type of project. For the evaluated scenarios, the results show that the investment in residential wind power generation has a low feasibility probability. The high, low, and intermediate wind speed scenarios produce feasibility results of 22.04%, 1.51%, and 15.06%, respectively. This result infers that it is essential to subsidize this technology and decrease the uncertainty of price fluctuations in order to leverage the residential wind power generation. The National Agency of Electrical Energy's (ANEEL) initiative to encourage installation of residential microgenerators is the first step to disseminate and consolidate clean energy generation technologies. Additional policies must be adopted in order to reduce the risk assumed by investors in residential wind power generation in Brazil.

Suggested Citation

  • Rocha, Luiz Célio Souza & Aquila, Giancarlo & Rotela Junior, Paulo & Paiva, Anderson Paulo de & Pamplona, Edson de Oliveira & Balestrassi, Pedro Paulo, 2018. "A stochastic economic viability analysis of residential wind power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 412-419.
  • Handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:412-419
    DOI: 10.1016/j.rser.2018.03.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118301746
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mario Ragwitz & Claus Huber & Gustav Resch, 2007. "Promotion of renewable energy sources: effects on innovation," International Journal of Public Policy, Inderscience Enterprises Ltd, vol. 2(1/2), pages 32-56.
    2. Aquila, Giancarlo & Pamplona, Edson de Oliveira & Queiroz, Anderson Rodrigo de & Rotela Junior, Paulo & Fonseca, Marcelo Nunes, 2017. "An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1090-1098.
    3. Amigun, Bamikole & Petrie, Daniel & Görgens, Johann, 2011. "Economic risk assessment of advanced process technologies for bioethanol production in South Africa: Monte Carlo analysis," Renewable Energy, Elsevier, vol. 36(11), pages 3178-3186.
    4. Grieser, Benno & Sunak, Yasin & Madlener, Reinhard, 2015. "Economics of small wind turbines in urban settings: An empirical investigation for Germany," Renewable Energy, Elsevier, vol. 78(C), pages 334-350.
    5. Ayoub, Nasser & Yuji, Naka, 2012. "Governmental intervention approaches to promote renewable energies—Special emphasis on Japanese feed-in tariff," Energy Policy, Elsevier, vol. 43(C), pages 191-201.
    6. Johnson, Blake E., 1994. "Modeling energy technology choices : Which investment analysis tools are appropriate?," Energy Policy, Elsevier, vol. 22(10), pages 877-883, October.
    7. Testa, Riccardo & Foderà, Mario & Di Trapani, Anna Maria & Tudisca, Salvatore & Sgroi, Filippo, 2016. "Giant reed as energy crop for Southern Italy: An economic feasibility study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 558-564.
    8. Arnold, Uwe & Yildiz, Özgür, 2015. "Economic risk analysis of decentralized renewable energy infrastructures – A Monte Carlo Simulation approach," Renewable Energy, Elsevier, vol. 77(C), pages 227-239.
    9. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    10. Sauter, Raphael & Watson, Jim, 2007. "Strategies for the deployment of micro-generation: Implications for social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2770-2779, May.
    11. Pere Mir-Artigues & Pablo del Río, 2014. "Combining tariffs, investment subsidies and soft loans in a renewable electricity deployment policy," Working Papers 2014/23, Institut d'Economia de Barcelona (IEB).
    12. Lipp, Judith, 2007. "Lessons for effective renewable electricity policy from Denmark, Germany and the United Kingdom," Energy Policy, Elsevier, vol. 35(11), pages 5481-5495, November.
    13. Bertoldi, Paolo & Rezessy, Silvia & Oikonomou, Vlasis, 2013. "Rewarding energy savings rather than energy efficiency: Exploring the concept of a feed-in tariff for energy savings," Energy Policy, Elsevier, vol. 56(C), pages 526-535.
    14. Becker, Bastian & Fischer, Doris, 2013. "Promoting renewable electricity generation in emerging economies," Energy Policy, Elsevier, vol. 56(C), pages 446-455.
    15. Mir-Artigues, Pere & del Río, Pablo, 2014. "Combining tariffs, investment subsidies and soft loans in a renewable electricity deployment policy," Energy Policy, Elsevier, vol. 69(C), pages 430-442.
    16. repec:eee:eneeco:v:65:y:2017:i:c:p:127-136 is not listed on IDEAS
    17. Sgroi, Filippo & Foderà, Mario & Trapani, Anna Maria Di & Tudisca, Salvatore & Testa, Riccardo, 2015. "Economic evaluation of biogas plant size utilizing giant reed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 403-409.
    18. del Río, Pablo & Linares, Pedro, 2014. "Back to the future? Rethinking auctions for renewable electricity support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 42-56.
    19. Georgios Tziralis & Konstantinos Kirytopoulos & Athanasios Rentizelas & Ilias Tatsiopoulos, 2009. "Holistic investment assessment: optimization, risk appraisal and decision making," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 30(6), pages 393-403.
    20. Holdermann, Claudius & Kissel, Johannes & Beigel, Jürgen, 2014. "Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors," Energy Policy, Elsevier, vol. 67(C), pages 612-617.
    21. Li, Cun-bin & Lu, Gong-shu & Wu, Si, 2013. "The investment risk analysis of wind power project in China," Renewable Energy, Elsevier, vol. 50(C), pages 481-487.
    22. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    23. Walters, Ryan & Walsh, Philip R., 2011. "Examining the financial performance of micro-generation wind projects and the subsidy effect of feed-in tariffs for urban locations in the United Kingdom," Energy Policy, Elsevier, vol. 39(9), pages 5167-5181, September.
    24. Shum, Kwok L. & Watanabe, Chihiro, 2010. "Network externality perspective of feed-in-tariffs (FIT) instruments--Some observations and suggestions," Energy Policy, Elsevier, vol. 38(7), pages 3266-3269, July.
    25. Safari, Bonfils & Gasore, Jimmy, 2010. "A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda," Renewable Energy, Elsevier, vol. 35(12), pages 2874-2880.
    26. Boomsma, Trine Krogh & Meade, Nigel & Fleten, Stein-Erik, 2012. "Renewable energy investments under different support schemes: A real options approach," European Journal of Operational Research, Elsevier, vol. 220(1), pages 225-237.
    27. Davis, William & Martín, Mariano, 2014. "Optimal year-round operation for methane production from CO2 and water using wind energy," Energy, Elsevier, vol. 69(C), pages 497-505.
    28. Juárez, Alberto Aquino & Araújo, Alex Maurício & Rohatgi, Janardan Singh & de Oliveira Filho, Oyama Douglas Queiroz, 2014. "Development of the wind power in Brazil: Political, social and technical issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 828-834.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:gam:jeners:v:12:y:2019:i:12:p:2281-:d:239917 is not listed on IDEAS
    2. repec:eee:rensus:v:97:y:2018:i:c:p:377-389 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:412-419. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.