IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v78y2015icp334-350.html
   My bibliography  Save this article

Economics of small wind turbines in urban settings: An empirical investigation for Germany

Author

Listed:
  • Grieser, Benno
  • Sunak, Yasin
  • Madlener, Reinhard

Abstract

In this paper we investigate the location-specific attractiveness of small wind turbines (SWT) for private households. In order to assess the economic viability of an investment in SWT, we analyze a set of scenarios that incorporate different types of SWT, various storage system options, support schemes, and specific urban surroundings for the case of Germany. As urban structures substantially influence local wind speeds, and hence the potential energy yield of a turbine, the location of SWT in the urban area is crucial for their economic feasibility. We find that SWT today are only profitable under very favorable conditions, the most important parameters being prevailing wind speeds and the location's degree of urbanization. In most cases, the coupling of the SWT to a storage system is crucial for cost-effectiveness. A feed-in tariff system specifically adapted to SWT technology is found to be an important driver of diffusion. Further research needs are identified in the field of long-term performance and yield projections for SWT. Based on the findings from our study, significant SWT diffusion can only be expected, if at all, in coastal suburban and rural areas.

Suggested Citation

  • Grieser, Benno & Sunak, Yasin & Madlener, Reinhard, 2015. "Economics of small wind turbines in urban settings: An empirical investigation for Germany," Renewable Energy, Elsevier, vol. 78(C), pages 334-350.
  • Handle: RePEc:eee:renene:v:78:y:2015:i:c:p:334-350
    DOI: 10.1016/j.renene.2015.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Ronit K. & Ahmed, M. Rafiuddin, 2013. "Blade design and performance testing of a small wind turbine rotor for low wind speed applications," Renewable Energy, Elsevier, vol. 50(C), pages 812-819.
    2. Lee, Seunghoon & Lee, Soogab, 2014. "Numerical and experimental study of aerodynamic noise by a small wind turbine," Renewable Energy, Elsevier, vol. 65(C), pages 108-112.
    3. Bortolini, Marco & Gamberi, Mauro & Graziani, Alessandro & Manzini, Riccardo & Pilati, Francesco, 2014. "Performance and viability analysis of small wind turbines in the European Union," Renewable Energy, Elsevier, vol. 62(C), pages 629-639.
    4. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    5. Lubitz, William David, 2014. "Impact of ambient turbulence on performance of a small wind turbine," Renewable Energy, Elsevier, vol. 61(C), pages 69-73.
    6. Weekes, S.M. & Tomlin, A.S., 2013. "Evaluation of a semi-empirical model for predicting the wind energy resource relevant to small-scale wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 280-288.
    7. Simic, Zdenko & Havelka, Juraj George & Bozicevic Vrhovcak, Maja, 2013. "Small wind turbines – A unique segment of the wind power market," Renewable Energy, Elsevier, vol. 50(C), pages 1027-1036.
    8. Ross, S.J. & McHenry, M.P. & Whale, J., 2012. "The impact of state feed-in tariffs and federal tradable quota support policies on grid-connected small wind turbine installed capacity in Australia," Renewable Energy, Elsevier, vol. 46(C), pages 141-147.
    9. Mikati, M. & Santos, M. & Armenta, C., 2013. "Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system," Renewable Energy, Elsevier, vol. 57(C), pages 587-593.
    10. Anselm Mattes, 2012. "Grüner Strom: Verbraucher sind bereit, für Investitionen in erneuerbare Energien zu zahlen," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 79(7), pages 2-9.
    11. Abohela, Islam & Hamza, Neveen & Dudek, Steven, 2013. "Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 1106-1118.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grieser, Benno & Madlener, Reinhard & Sunak, Yasin, 2013. "Economics of Small Wind Power Plants in Urban Settings: An Empirical Investigation for Germany," FCN Working Papers 1/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    2. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    3. Rocha, P.A. Costa & Carneiro de Araujo, J.W. & Lima, R.J. Pontes & Vieira da Silva, M.E. & Albiero, D. & de Andrade, C.F. & Carneiro, F.O.M., 2018. "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, Elsevier, vol. 148(C), pages 169-178.
    4. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    5. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Nishida, Yusuke, 2016. "Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (part I: Static pressure measurement)," Energy, Elsevier, vol. 111(C), pages 701-712.
    6. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    7. Kyung Chun Kim & Ho Seong Ji & Yoon Kee Kim & Qian Lu & Joon Ho Baek & Rinus Mieremet, 2014. "Experimental and Numerical Study of the Aerodynamic Characteristics of an Archimedes Spiral Wind Turbine Blade," Energies, MDPI, vol. 7(12), pages 1-22, November.
    8. KC, Anup & Whale, Jonathan & Urmee, Tania, 2019. "Urban wind conditions and small wind turbines in the built environment: A review," Renewable Energy, Elsevier, vol. 131(C), pages 268-283.
    9. Francesco Castellani & Davide Astolfi & Matteo Becchetti & Francesco Berno & Filippo Cianetti & Alessandro Cetrini, 2018. "Experimental and Numerical Vibrational Analysis of a Horizontal-Axis Micro-Wind Turbine," Energies, MDPI, vol. 11(2), pages 1-16, February.
    10. Rieck, Jenny & Taube, Lina & Behrendt, Frank, 2020. "Feasibility analysis of a heat pump powered by wind turbines and PV- Applications for detached houses in Germany," Renewable Energy, Elsevier, vol. 162(C), pages 1104-1112.
    11. Yossri, Widad & Ben Ayed, Samah & Abdelkefi, Abdessattar, 2021. "Airfoil type and blade size effects on the aerodynamic performance of small-scale wind turbines: Computational fluid dynamics investigation," Energy, Elsevier, vol. 229(C).
    12. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    13. Rocha, P.A. Costa & Rocha, H.H. Barbosa & Carneiro, F.O. Moura & Vieira da Silva, M.E. & Bueno, A. Valente, 2014. "k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine," Energy, Elsevier, vol. 65(C), pages 412-418.
    14. Zahra Sefidgar & Amir Ahmadi Joneidi & Ahmad Arabkoohsar, 2023. "A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines," Sustainability, MDPI, vol. 15(5), pages 1-39, March.
    15. Drew, D.R. & Barlow, J.F. & Cockerill, T.T. & Vahdati, M.M., 2015. "The importance of accurate wind resource assessment for evaluating the economic viability of small wind turbines," Renewable Energy, Elsevier, vol. 77(C), pages 493-500.
    16. Oscar Gutiérrez & Francisco Ruiz-Aliseda, 2011. "Real options with unknown-date events," Annals of Finance, Springer, vol. 7(2), pages 171-198, May.
    17. Kritana Prueksakorn & Cheng-Xu Piao & Hyunchul Ha & Taehyeung Kim, 2015. "Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
    18. Arve, Malin & Zwart, Gijsbert, 2023. "Optimal procurement and investment in new technologies under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    19. Marks, Phillipa & Marks, Brian, 2007. "Spectrum Allocation, Spectrum Commons and Public Goods: the Role of the Market," MPRA Paper 6785, University Library of Munich, Germany.
    20. Pierre‐Richard Agénor, 2004. "Macroeconomic Adjustment and the Poor: Analytical Issues and Cross‐Country Evidence," Journal of Economic Surveys, Wiley Blackwell, vol. 18(3), pages 351-408, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:78:y:2015:i:c:p:334-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.