Optimal year-round operation for methane production from CO2 and water using wind energy
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2014.03.043
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Martín, Mariano & Grossmann, Ignacio E., 2013. "Optimal use of hybrid feedstock, switchgrass and shale gas for the simultaneous production of hydrogen and liquid fuels," Energy, Elsevier, vol. 55(C), pages 378-391.
- Carton, J.G. & Olabi, A.G., 2010. "Wind/hydrogen hybrid systems: Opportunity for Ireland’s wind resource to provide consistent sustainable energy supply," Energy, Elsevier, vol. 35(12), pages 4536-4544.
- Olateju, Babatunde & Kumar, Amit, 2011. "Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands," Energy, Elsevier, vol. 36(11), pages 6326-6339.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
- Wu, Liang & He, Yuehui & Lei, Ting & Nan, Bo & Xu, Nanping & Zou, Jin & Huang, Baiyun & Liu, C.T., 2013. "Characterization of the porous Ni3Al–Mo electrodes during hydrogen generation from alkaline water electrolysis," Energy, Elsevier, vol. 63(C), pages 216-224.
- Caumon, Pauline & Lopez-Botet Zulueta, Miguel & Louyrette, Jérémy & Albou, Sandrine & Bourasseau, Cyril & Mansilla, Christine, 2015. "Flexible hydrogen production implementation in the French power system: Expected impacts at the French and European levels," Energy, Elsevier, vol. 81(C), pages 556-562.
- Wu, Liang & He, Yuehui & Lei, Ting & Nan, Bo & Xu, Nanping & Zou, Jin & Huang, Baiyun & Liu, C.T., 2014. "The stability of hydrogen evolution activity and corrosion behavior of porous Ni3Al–Mo electrode in alkaline solution during long-term electrolysis," Energy, Elsevier, vol. 67(C), pages 19-26.
- Rahimi, Sahand & Meratizaman, Mousa & Monadizadeh, Sina & Amidpour, Majid, 2014. "Techno-economic analysis of wind turbine–PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area," Energy, Elsevier, vol. 67(C), pages 381-396.
- Mansilla, C. & Louyrette, J. & Albou, S. & Bourasseau, C. & Dautremont, S., 2013. "Economic competitiveness of off-peak hydrogen production today – A European comparison," Energy, Elsevier, vol. 55(C), pages 996-1001.
- Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
- Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
- Okur, Osman & İyigün Karadağ, Çiğdem & Boyacı San, Fatma Gül & Okumuş, Emin & Behmenyar, Gamze, 2013. "Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell," Energy, Elsevier, vol. 57(C), pages 574-580.
- Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
- Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
- Hiendro, Ayong & Kurnianto, Rudi & Rajagukguk, Managam & Simanjuntak, Yohannes M. & Junaidi,, 2013. "Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia," Energy, Elsevier, vol. 59(C), pages 652-657.
- Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
- Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
- Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015.
"CO2-emissions from Norwegian oil and gas extraction,"
Energy, Elsevier, vol. 90(P2), pages 1956-1966.
- Ekaterina Gavenas & Knut Einar Rosendahl & Terje Skjerpen, 2015. "CO2-emissions form Norwegian oil and gas extraction," Discussion Papers 806, Statistics Norway, Research Department.
- Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015. "CO2-emissions from Norwegian oil and gas extraction," Working Paper Series 07-2015, Norwegian University of Life Sciences, School of Economics and Business.
- Wang, Hongjian & Cao, Tianyu & Shi, Yixiang & Cai, Ningsheng & Yuan, Wei, 2014. "Liquid antimony anode direct carbon fuel cell fueled with mass-produced de-ash coal," Energy, Elsevier, vol. 75(C), pages 555-559.
- Glotić, Arnel & Glotić, Adnan & Kitak, Peter & Pihler, Jože & Tičar, Igor, 2014. "Optimization of hydro energy storage plants by using differential evolution algorithm," Energy, Elsevier, vol. 77(C), pages 97-107.
- Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
- Razzaqul Ahshan, 2021. "Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
- Carton, J.G. & Olabi, A.G., 2017. "Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates," Energy, Elsevier, vol. 136(C), pages 185-195.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:69:y:2014:i:c:p:497-505. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.