IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4375-d839751.html
   My bibliography  Save this article

Hydrogen Production Cost Forecasts since the 1970s and Implications for Technological Development

Author

Listed:
  • Tomonori Miyagawa

    (Department of Innovation Science, School of Environment and Society, Tokyo Institute of Technology, 3-3-6, Shibaura, Minato-ku, Tokyo 108-0023, Japan)

  • Mika Goto

    (Department of Innovation Science, School of Environment and Society, Tokyo Institute of Technology, 3-3-6, Shibaura, Minato-ku, Tokyo 108-0023, Japan)

Abstract

This study reviews the extant literature on hydrogen production cost forecasts to identify and analyze the historical trend of such forecasts in order to explore the feasibility of wider adoption. Hydrogen is an important energy source that can be used to achieve a carbon-neutral society, but the widespread adoption of hydrogen production technologies is hampered by the high costs. The production costs vary depending on the technology employed: gray, renewable electrolysis, or biomass. The study identifies 174 production cost forecast data points from articles published between 1979 and 2020 and makes a comparative assessment using non-parametric statistical tests. The results show three different cost forecast trends across technologies. First, the production cost of gray hydrogen showed an increasing trend until 2015, but started declining after 2015. Second, the renewable electrolysis hydrogen cost was the highest of all, but has shown a gradual declining trend since 2015. Finally, the biomass hydrogen cost has been relatively cheaper up until 2015, after which it became the highest. Renewable electrolysis and biomass hydrogen will be potential candidates (as principal drivers) to reduce CO 2 emissions in the future, but renewable electrolysis hydrogen is more promising in this regard due to its declining production cost trend. Gray hydrogen can also be an alternative candidate to renewable electrolysis hydrogen because it can be equipped with carbon capture storage (CCS) to produce blue hydrogen, although we need to consider additional production costs incurred by the introduction of CCS. The study discusses the technological development and policy implications of the results on hydrogen production costs.

Suggested Citation

  • Tomonori Miyagawa & Mika Goto, 2022. "Hydrogen Production Cost Forecasts since the 1970s and Implications for Technological Development," Energies, MDPI, vol. 15(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4375-:d:839751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olateju, Babatunde & Monds, Joshua & Kumar, Amit, 2014. "Large scale hydrogen production from wind energy for the upgrading of bitumen from oil sands," Applied Energy, Elsevier, vol. 118(C), pages 48-56.
    2. Mansilla, C. & Louyrette, J. & Albou, S. & Bourasseau, C. & Dautremont, S., 2013. "Economic competitiveness of off-peak hydrogen production today – A European comparison," Energy, Elsevier, vol. 55(C), pages 996-1001.
    3. Timmerberg, Sebastian & Kaltschmitt, Martin, 2019. "Hydrogen from renewables: Supply from North Africa to Central Europe as blend in existing pipelines – Potentials and costs," Applied Energy, Elsevier, vol. 237(C), pages 795-809.
    4. Chisalita, Dora-Andreea & Cormos, Calin-Cristian, 2019. "Techno-economic assessment of hydrogen production processes based on various natural gas chemical looping systems with carbon capture," Energy, Elsevier, vol. 181(C), pages 331-344.
    5. Menanteau, P. & Quéméré, M.M. & Le Duigou, A. & Le Bastard, S., 2011. "An economic analysis of the production of hydrogen from wind-generated electricity for use in transport applications," Energy Policy, Elsevier, vol. 39(5), pages 2957-2965, May.
    6. Oh, Taek Hyun, 2016. "A formic acid hydrogen generator using Pd/C3N4 catalyst for mobile proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 112(C), pages 679-685.
    7. Holtermann, Timm & Madlener, Reinhard, 2011. "Assessment of the technological development and economic potential of photobioreactors," Applied Energy, Elsevier, vol. 88(5), pages 1906-1919, May.
    8. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    9. Olateju, Babatunde & Kumar, Amit, 2016. "A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands," Energy, Elsevier, vol. 115(P1), pages 604-614.
    10. Matzen, Michael & Alhajji, Mahdi & Demirel, Yaşar, 2015. "Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix," Energy, Elsevier, vol. 93(P1), pages 343-353.
    11. Robert Grabarczyk & Krzysztof Urbaniec & Jacek Wernik & Marian Trafczynski, 2019. "Evaluation of the Two-Stage Fermentative Hydrogen Production from Sugar Beet Molasses," Energies, MDPI, vol. 12(21), pages 1-15, October.
    12. Zhu, Xiaojie & Guo, Ruipeng & Chen, Bin & Zhang, Jing & Hayat, Tasawar & Alsaedi, Ahmed, 2015. "Embodiment of virtual water of power generation in the electric power system in China," Applied Energy, Elsevier, vol. 151(C), pages 345-354.
    13. Martin Khzouz & Evangelos I. Gkanas & Jia Shao & Farooq Sher & Dmytro Beherskyi & Ahmad El-Kharouf & Mansour Al Qubeissi, 2020. "Life Cycle Costing Analysis: Tools and Applications for Determining Hydrogen Production Cost for Fuel Cell Vehicle Technology," Energies, MDPI, vol. 13(15), pages 1-19, July.
    14. Ajanovic, Amela & Haas, Reinhard, 2018. "Economic prospects and policy framework for hydrogen as fuel in the transport sector," Energy Policy, Elsevier, vol. 123(C), pages 280-288.
    15. Robinius, Martin & Raje, Tanmay & Nykamp, Stefan & Rott, Tobias & Müller, Martin & Grube, Thomas & Katzenbach, Burkhard & Küppers, Stefan & Stolten, Detlef, 2018. "Power-to-Gas: Electrolyzers as an alternative to network expansion – An example from a distribution system operator," Applied Energy, Elsevier, vol. 210(C), pages 182-197.
    16. Lv, Pengmei & Wu, Chuangzhi & Ma, Longlong & Yuan, Zhenhong, 2008. "A study on the economic efficiency of hydrogen production from biomass residues in China," Renewable Energy, Elsevier, vol. 33(8), pages 1874-1879.
    17. Dowaki, Kiyoshi & Ohta, Tsuyoshi & Kasahara, Yasukazu & Kameyama, Mitsuo & Sakawaki, Koji & Mori, Shunsuke, 2007. "An economic and energy analysis on bio-hydrogen fuel using a gasification process," Renewable Energy, Elsevier, vol. 32(1), pages 80-94.
    18. Shashi Sharma & Shivani Agarwal & Ankur Jain, 2021. "Significance of Hydrogen as Economic and Environmentally Friendly Fuel," Energies, MDPI, vol. 14(21), pages 1-28, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johannes Full & Silja Hohmann & Sonja Ziehn & Edgar Gamero & Tobias Schließ & Hans-Peter Schmid & Robert Miehe & Alexander Sauer, 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)," Energies, MDPI, vol. 16(13), pages 1-16, June.
    2. Rishabh Agarwal, 2022. "Transition to a Hydrogen-Based Economy: Possibilities and Challenges," Sustainability, MDPI, vol. 14(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Huan & Guo, Wei & Liu, Shuqin, 2022. "Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process," Energy, Elsevier, vol. 258(C).
    2. Okunlola, Ayodeji & Davis, Matthew & Kumar, Amit, 2023. "Assessing the cost competitiveness of electrolytic hydrogen production from small modular nuclear reactor-based power plants: A price-following perspective," Applied Energy, Elsevier, vol. 346(C).
    3. Mohamed Benghanem & Adel Mellit & Hamad Almohamadi & Sofiane Haddad & Nedjwa Chettibi & Abdulaziz M. Alanazi & Drigos Dasalla & Ahmed Alzahrani, 2023. "Hydrogen Production Methods Based on Solar and Wind Energy: A Review," Energies, MDPI, vol. 16(2), pages 1-31, January.
    4. Olateju, Babatunde & Kumar, Amit, 2016. "A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands," Energy, Elsevier, vol. 115(P1), pages 604-614.
    5. Davis, M. & Okunlola, A. & Di Lullo, G. & Giwa, T. & Kumar, A., 2023. "Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Hsieh, Chuang-Yu & Pei, Pucheng & Bai, Qiang & Su, Ay & Weng, Fang-Bor & Lee, Chi-Yuan, 2021. "Results of a 200 hours lifetime test of a 7 kW Hybrid–Power fuel cell system on electric forklifts," Energy, Elsevier, vol. 214(C).
    7. Rahil, Abdulla & Gammon, Rupert & Brown, Neil, 2018. "Flexible operation of electrolyser at the garage forecourt to support grid balancing and exploitation of hydrogen as a clean fuel," Research in Transportation Economics, Elsevier, vol. 70(C), pages 125-138.
    8. Yahaya, Ahmad Zubair & Somalu, Mahendra Rao & Muchtar, Andanastuti & Sulaiman, Shaharin Anwar & Wan Daud, Wan Ramli, 2019. "Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor," Energy, Elsevier, vol. 175(C), pages 931-940.
    9. Ahshan, Razzaqul & Onen, Ahmet & Al-Badi, Abdullah H., 2022. "Assessment of wind-to-hydrogen (Wind-H2) generation prospects in the Sultanate of Oman," Renewable Energy, Elsevier, vol. 200(C), pages 271-282.
    10. Okunlola, Ayodeji & Davis, Matthew & Kumar, Amit, 2022. "The development of an assessment framework to determine the technical hydrogen production potential from wind and solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    11. Mohammadi, Amin & Mehrpooya, Mehdi, 2018. "A comprehensive review on coupling different types of electrolyzer to renewable energy sources," Energy, Elsevier, vol. 158(C), pages 632-655.
    12. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun & Scipioni, Antonio & Mazzi, Anna, 2015. "Role prioritization of hydrogen production technologies for promoting hydrogen economy in the current state of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1217-1229.
    13. Abdulla Rahil & Rupert Gammon, 2017. "Dispatchable Hydrogen Production at the Forecourt for Electricity Demand Shaping," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    14. Hosseinzadeh, Ahmad & Zhou, John L. & Li, Xiaowei & Afsari, Morteza & Altaee, Ali, 2022. "Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
    16. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    17. Bernstein, Ronald & Madlener, Reinhard, 2011. "Responsiveness of Residential Electricity Demand in OECD Countries: A Panel Cointegation and Causality Analysis," FCN Working Papers 8/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    18. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    19. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    20. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4375-:d:839751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.