IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i9p3842-d1641615.html
   My bibliography  Save this article

Artificial Intelligence, Technological Innovation, and Employment Transformation for Sustainable Development: Evidence from China

Author

Listed:
  • Hui Liang

    (School of Government, University of International Business and Economics, Beijing 100029, China
    These authors contributed equally to this work.)

  • Jingbo Fan

    (School of Government, University of International Business and Economics, Beijing 100029, China
    These authors contributed equally to this work.)

  • Yunhan Wang

    (Department of Academic Publications, University of International Business and Economics, Beijing 100029, China
    These authors contributed equally to this work.)

Abstract

With the rapid advancement of artificial intelligence (AI) technology, the global employment structure is undergoing profound transformations, significantly impacting social sustainability. This study utilizes panel data from 30 Chinese provinces spanning the years 2010 to 2022 and applies a two-way fixed-effects model to analyze the impact of AI development on the employment skills structure. The findings indicate that advancements in AI technology significantly suppress the demand for low-skilled labor while markedly enhancing the demand for both middle- and high-skilled labor. The threshold effect analysis reveals a nonlinear relationship between AI advancements and the demand for low-skilled workers. Mediation effect tests demonstrate that technological innovation serves as a mediating factor in AI’s impact on low- and middle-skilled labor but has no significant effect on high-skilled labor. The heterogeneity analysis further indicates that AI’s negative impact on low-skilled female employment is more severe than for males, while its positive impact on high-skilled male workers is significant. Additionally, the employment effects of AI are mainly observed in labor-intensive provinces, with minimal influence in capital-intensive areas. This study suggests harnessing AI’s potential to promote employment while proactively mitigating its disruptive effects on the labor market through enhanced research and development support, strengthened employment security, and coordinated regional economic development, thereby advancing sustainable economic and social progress.

Suggested Citation

  • Hui Liang & Jingbo Fan & Yunhan Wang, 2025. "Artificial Intelligence, Technological Innovation, and Employment Transformation for Sustainable Development: Evidence from China," Sustainability, MDPI, vol. 17(9), pages 1-28, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3842-:d:1641615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/9/3842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/9/3842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Vivarelli, 2014. "Innovation, Employment and Skills in Advanced and Developing Countries: A Survey of Economic Literature," Journal of Economic Issues, Taylor & Francis Journals, vol. 48(1), pages 123-154.
    2. Tiago Neves Sequeira & Susana Garrido & Marcelo Santos, 2021. "Robots are not always bad for employment and wages," International Economics, CEPII research center, issue 167, pages 108-119.
    3. Sotiris Blanas & Gino Gancia & Sang Yoon (Tim) Lee, 2019. "Who is afraid of machines?," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 34(100), pages 627-690.
    4. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    5. Daron Acemoglu & Pascual Restrepo, 2019. "Automation and New Tasks: How Technology Displaces and Reinstates Labor," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 3-30, Spring.
    6. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    7. Goldfarb, Avi & Taska, Bledi & Teodoridis, Florenta, 2023. "Could machine learning be a general purpose technology? A comparison of emerging technologies using data from online job postings," Research Policy, Elsevier, vol. 52(1).
    8. Anton Korinek, 2023. "Language Models and Cognitive Automation for Economic Research," NBER Working Papers 30957, National Bureau of Economic Research, Inc.
    9. Xianpu Xu & Yuchen Song, 2023. "Is There a Conflict between Automation and Environment? Implications of Artificial Intelligence for Carbon Emissions in China," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    10. Maarten Goos & Alan Manning, 2007. "Lousy and Lovely Jobs: The Rising Polarization of Work in Britain," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 118-133, February.
    11. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    12. Carlo Pizzinelli & Augustus J Panton & Ms. Marina Mendes Tavares & Mauro Cazzaniga & Longji Li, 2023. "Labor Market Exposure to AI: Cross-country Differences and Distributional Implications," IMF Working Papers 2023/216, International Monetary Fund.
    13. James Bessen, 2018. "AI and Jobs: the role of demand," NBER Working Papers 24235, National Bureau of Economic Research, Inc.
    14. Liu, Jun & Chang, Huihong & Forrest, Jeffrey Yi-Lin & Yang, Baohua, 2020. "Influence of artificial intelligence on technological innovation: Evidence from the panel data of china's manufacturing sectors," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    15. Mi Guo, 2024. "Does Industrial Intelligence Promote Sustainable Employment?," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    16. Oussama Chemlal & Wafaa Benomar, 2024. "The Technological Impact on Employment in Spain between 2023 and 2035," Forecasting, MDPI, vol. 6(2), pages 1-30, April.
    17. Valeria Cirillo, 2017. "Technology, employment and skills," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(8), pages 734-754, November.
    18. Tyna Eloundou & Sam Manning & Pamela Mishkin & Daniel Rock, 2023. "GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models," Papers 2303.10130, arXiv.org, revised Aug 2023.
    19. Mingyue Chen & Shuting Wang & Xiaowen Wang, 2024. "How Does Artificial Intelligence Impact Green Development? Evidence from China," Sustainability, MDPI, vol. 16(3), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xinchun & Sun, Murong & Liu, Jianxu & Xu, Aijia, 2024. "The nexus between industrial robot and employment in China: The effects of technology substitution and technology creation," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    2. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    3. Mario Pianta, 2018. "Technology and Employment: Twelve Stylised Facts for the Digital Age," The Indian Journal of Labour Economics, Springer;The Indian Society of Labour Economics (ISLE), vol. 61(2), pages 189-225, June.
    4. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2021. "Stop worrying and love the robot: An activity-based approach to assess the impact of robotization on employment dynamics," GLO Discussion Paper Series 802, Global Labor Organization (GLO).
    5. Valeria Cirillo & Mario Pianta & Leopoldo Nascia, 2018. "Technology and Occupations in Business Cycles," Sustainability, MDPI, vol. 10(2), pages 1-25, February.
    6. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2025. "What workers and robots do: An activity-based analysis of the impact of robotization on changes in local employment," Research Policy, Elsevier, vol. 54(1).
    7. Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022. "Robots and the origin of their labour-saving impact," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    8. Fernández-Macías, Enrique & Klenert, David & Antón, José-Ignacio, 2021. "Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 76-89.
    9. Clément Bosquet & Paul Maarek & Elliot Moiteaux, 2021. "Routine-biased technological change and wages by education level: Occupational downgrading and displacement effects," Working Papers hal-03270715, HAL.
    10. Harry Moroz & Mariana Viollaz, 2024. "The Future of Work in Central America and the Dominican Republic," World Bank Publications - Reports 42043, The World Bank Group.
    11. Kostøl, Fredrik B. & Svarstad, Elin, 2023. "Trade Unions and the Process of Technological Change," Labour Economics, Elsevier, vol. 84(C).
    12. Ebeke, Christian H. & Eklou, Kodjovi M., 2023. "Automation and the employment elasticity of fiscal policy," Journal of Macroeconomics, Elsevier, vol. 75(C).
    13. Fierro, Luca Eduardo & Caiani, Alessandro & Russo, Alberto, 2022. "Automation, Job Polarisation, and Structural Change," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 499-535.
    14. Barbieri, Laura & Mussida, Chiara & Piva, Mariacristina & Vivarelli, Marco, 2019. "Testing the employment and skill impact of new technologies: A survey and some methodological issues," MERIT Working Papers 2019-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    15. Azio Barani, 2021. "Innovazione tecnologica e lavoro: automazione, occupazione e impatti socio-economici," QUADERNI DI ECONOMIA DEL LAVORO, FrancoAngeli Editore, vol. 0(114), pages 51-79.
    16. Li, Chao & Lao, Wenyu & Li, Xiang & Zhang, Yuhan, 2024. "Automated workforce, financial precarities and family consumption: The importance of demand-side policies under the background of automation applications," Economic Analysis and Policy, Elsevier, vol. 84(C), pages 1287-1308.
    17. Gravina, Antonio Francesco & Foster-McGregor, Neil, 2020. "Automation, globalisation and relative wages: An empirical analysis of winners and losers," MERIT Working Papers 2020-040, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    18. Du, Longzheng & Lin, Weifen, 2022. "Does the application of industrial robots overcome the Solow paradox? Evidence from China," Technology in Society, Elsevier, vol. 68(C).
    19. Albanesi, Stefania & Dias da Silva, Antonio & Jimeno, Juan Francisco & Lamo, Ana & Wabitsch, Alena, 2023. "New Technologies and Jobs in Europe," CEPR Discussion Papers 18220, C.E.P.R. Discussion Papers.
    20. Dario Guarascio & Alessandro Piccirillo & Jelena Reljic, 2024. "Will robot replace workers? Assessing the impact of robots on employment and wages with meta-analysis," LEM Papers Series 2024/03, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3842-:d:1641615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.