Author
Listed:
- Ranran Hu
(College of Economics and Management, Xinjiang Agricultural University, Ürümqi 830052, China)
- Hongwei Fang
(College of Economics and Management, Xinjiang Agricultural University, Ürümqi 830052, China)
- Weizhong Liu
(College of Economics and Management, Xinjiang Agricultural University, Ürümqi 830052, China)
Abstract
Vertical alliances within agricultural supply chains serve as critical institutional vehicles for deepening triple-sector integration (primary–secondary–tertiary) in rural economies, driving agricultural modernization, and advancing rural revitalization. However, sustaining alliance stability constitutes a complex dynamic process wherein inadequate stakeholder engagement and collaborative failures frequently precipitate alliance instability or even dissolution. Existing scholarship exhibits limited systematic examination of the micro-mechanisms and regulatory pathways through which multi-agent strategic interactions affect alliance stability from a dynamic evolutionary perspective. To address this gap, this research focuses on China’s core agricultural innovation vehicle—the Agricultural Industrialization Consortium—and examines the tripartite structure of “Leading Enterprise–Family Farm–Integrated Agricultural Service Providers.” We construct a tripartite evolutionary game model to systematically analyze (1) the influence mechanisms governing cooperative strategy selection, and (2) the regulatory effects of key parameters on consortium stability through strategic stability analysis and multi-scenario simulations. Our key findings are as follows: Four strategic equilibrium scenarios emerge under specific conditions, with synergistic parameter optimization constituting the fundamental driver of alliance stability. Specific mechanisms are as follows: (i) compensation mechanisms effectively mobilize leading enterprises under widespread defection, though excessive penalties erode reciprocity principles; (ii) strategic reductions in benefit sharing ratios coupled with moderate factor value-added coefficients are critical for reversing leading enterprises’ defection; (iii) dual adjustment of cost sharing and benefit sharing coefficients is necessary to resolve bilateral defection dilemmas; and (iv) synchronized optimization of compensation, cost sharing, benefit sharing, and value-added parameters represents the sole pathway to achieving stable (1,1,1) full-cooperation equilibrium. Critical barriers include threshold effects in benefit sharing ratios (defection triggers when shared benefits > cooperative benefits) and the inherent trade-off between penalty intensity and alliance resilience. Consequently, policy interventions must balance immediate constraints with long-term cooperative sustainability. This study extends the application of evolutionary game theory in agricultural organization research by revealing the micro-level mechanisms underlying alliance stability and providing a novel analytical framework for addressing the ‘strategy–equilibrium’ paradox in multi-agent cooperation. Our work not only offers new theoretical perspectives and methodological support for understanding the dynamic stability mechanisms of agricultural vertical alliances but also establishes a substantive theoretical foundation for optimizing consortium governance and promoting long-term alliance stability.
Suggested Citation
Ranran Hu & Hongwei Fang & Weizhong Liu, 2025.
"How Do Vertical Alliances Form in Agricultural Supply Chains?—An Evolutionary Game Analysis Based on Chinese Experience,"
Sustainability, MDPI, vol. 17(17), pages 1-25, September.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:17:p:7975-:d:1742175
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7975-:d:1742175. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.