IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5884-d1688072.html
   My bibliography  Save this article

Marine Spatial Planning for Offshore Wind Firms: A Comparison of Global Existing Policies and Data for Energy System Storage

Author

Listed:
  • Yun-Sin Chen

    (Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung City 80424, Taiwan)

  • Cheng-Yu Hu

    (Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, Tainan City 70101, Taiwan)

  • Chun-Yi Li

    (Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, Tainan City 70101, Taiwan)

  • Jia-Bin Lin

    (Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, Tainan City 70101, Taiwan)

  • Yi-Che Shih

    (Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, Tainan City 70101, Taiwan)

Abstract

This study aims to conduct a comparative analysis of existing global policies and data for offshore wind (OW) farms (OWFs) by exploring the performance of the United Kingdom (UK), Germany, China, Taiwan and the rest of the world based on chosen quantitative metrics (total installations, energy capacity, bathymetry, wind resources) and qualitative policy drivers (costs, installation regulations, taxation). This research adopts an explorative multi-case study design that involves analyzing quantitative and qualitative metrics of OW energy parameters for the UK, Germany, China, Taiwan and the rest of the world. The quantitative metrics include the total OW energy installations, bathymetric data, wind speed and direction data and OW energy capacity while the qualitative metrics include the policy changes on costs of installations, installation policies and taxation policies. As compared to the United Kingdom and Germany, China reported the highest number of installed OW energy farms between 2019 and 2023. The UK reported a gradual increase in the number of OWFs installed between 2019 and 2023. Taiwan has the lowest number of OWFs and wind energy capacity but ranks almost the same as China and the UK in terms of the bathymetric data and wind speed. Statistically significant correlation, ( p ≤ 0.05), between the wind speed and the number of OWFs for all the countries. No statistically significant relationship between the bathymetric characteristics and the number of OW installations and wind energy capacity. Geographical factors, weather patterns and government policies play crucial roles in the successful installation and maintenance of OWFs.

Suggested Citation

  • Yun-Sin Chen & Cheng-Yu Hu & Chun-Yi Li & Jia-Bin Lin & Yi-Che Shih, 2025. "Marine Spatial Planning for Offshore Wind Firms: A Comparison of Global Existing Policies and Data for Energy System Storage," Sustainability, MDPI, vol. 17(13), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5884-:d:1688072
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Kunpeng & Wang, Chenyu & Liu, Zhenfei & Fu, Deran & Chen, Guo & Li, Wen & Nie, Lei & Shen, Yijun & Xu, Yonghong & Kuang, Rao, 2025. "Efficiency analysis of ocean compressed air energy storage system under constant volume air storage conditions," Energy, Elsevier, vol. 329(C).
    2. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    3. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    4. Ke-Sheng Cheng & Cheng-Yu Ho & Jen-Hsin Teng, 2020. "Wind Characteristics in the Taiwan Strait: A Case Study of the First Offshore Wind Farm in Taiwan," Energies, MDPI, vol. 13(24), pages 1-21, December.
    5. Ke-Sheng Cheng & Cheng-Yu Ho & Jen-Hsin Teng, 2022. "Wind and Sea Breeze Characteristics for the Offshore Wind Farms in the Central Coastal Area of Taiwan," Energies, MDPI, vol. 15(3), pages 1-23, January.
    6. Soares-Ramos, Emanuel P.P. & de Oliveira-Assis, Lais & Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M., 2020. "Current status and future trends of offshore wind power in Europe," Energy, Elsevier, vol. 202(C).
    7. Chia-Yun Huang & Ting-To Yu & Wei-Min Lin & Kung-Ming Chung & Keh-Chin Chang, 2022. "Energy Sustainability on an Offshore Island: A Case Study in Taiwan," Energies, MDPI, vol. 15(6), pages 1-15, March.
    8. Guanying Chen & Zhenming Ji, 2024. "A Review of Solar and Wind Energy Resource Projection Based on the Earth System Model," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    9. Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
    10. Lu, Tianguang & Yi, Xinning & Li, Jing & Wu, Shaocong, 2025. "Collaborative planning of integrated hydrogen energy chain multi-energy systems: A review," Applied Energy, Elsevier, vol. 393(C).
    11. Huey-Shian Chung, 2021. "Taiwan’s Offshore Wind Energy Policy: From Policy Dilemma to Sustainable Development," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    12. Wan, Anping & Gong, Wenbin & Iqbal, Atif & AL-Bukhaiti, Khalil & Ji, Yunsong & Duer, Stanislaw & Ma, Shidong & Yao, Faren, 2025. "Robust loop shaping design pitch control of wind turbine for maximal power output and reduced loading," Energy, Elsevier, vol. 319(C).
    13. Armagan Canan, 2023. "Offshore wind energy policy paths: A comparative analysis of Denmark and Germany," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2023(1), pages 35-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    2. Diebold, Francis X. & Rudebusch, Glenn D., 2023. "Climate models underestimate the sensitivity of Arctic sea ice to carbon emissions," Energy Economics, Elsevier, vol. 126(C).
    3. Shih-Chieh Liao & Shih-Chieh Chang & Tsung-Chi Cheng, 2021. "Managing the Volatility Risk of Renewable Energy: Index Insurance for Offshore Wind Farms in Taiwan," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    4. Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe, 2023. "Assessing and comparing fixed-target forecasts of Arctic sea ice: Glide charts for feature-engineered linear regression and machine learning models," Energy Economics, Elsevier, vol. 124(C).
    5. Wu, Zhe & Zhang, Qiang & Cheng, Lifeng & Hou, Shuyong & Tan, Shengyue, 2020. "The VMTES: Application to the structural health monitoring and diagnosis of rotating machines," Renewable Energy, Elsevier, vol. 162(C), pages 2380-2396.
    6. Joalland, Olivier & Mahieu, Pierre-Alexandre, 2023. "Developing large-scale offshore wind power programs: A choice experiment analysis in France," Ecological Economics, Elsevier, vol. 204(PA).
    7. Deng, Wanru & Liu, Liqin & Dai, Yuanjun & Wu, Haitao & Yuan, Zhiming, 2024. "A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques," Energy, Elsevier, vol. 304(C).
    8. Jennifer Castle & David Hendry, 2020. "Identifying the Causal Role of CO2 during the Ice Ages," Economics Series Working Papers 898, University of Oxford, Department of Economics.
    9. He, Guolin & Ding, Kang & Wu, Xiaomeng & Yang, Xiaoqing, 2019. "Dynamics modeling and vibration modulation signal analysis of wind turbine planetary gearbox with a floating sun gear," Renewable Energy, Elsevier, vol. 139(C), pages 718-729.
    10. Diebold, Francis X. & Göbel, Maximilian, 2022. "A benchmark model for fixed-target Arctic sea ice forecasting," Economics Letters, Elsevier, vol. 215(C).
    11. Luke P. Jackson & Katarina Juselius & Andrew B. Martinez & Felix Pretis, 2025. "Modelling the dependence between recent changes in polar ice sheets: Implications for global sea-level projections," Working Papers 2025-002, The George Washington University, The Center for Economic Research.
    12. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    13. Assireu, Arcilan T. & Fisch, Gilberto & Carvalho, Vinícius S.O. & Pimenta, Felipe M. & de Freitas, Ramon M. & Saavedra, Osvaldo R. & Neto, Francisco L.A. & Júnior, Audálio R.T. & Oliveira, Denisson Q., 2024. "Sea breeze-driven effects on wind down-ramps: Implications for wind farms along the north-east coast of Brazil," Energy, Elsevier, vol. 294(C).
    14. Diebold, Francis X. & Rudebusch, Glenn D. & Göbel, Maximilian & Goulet Coulombe, Philippe & Zhang, Boyuan, 2023. "When will Arctic sea ice disappear? Projections of area, extent, thickness, and volume," Journal of Econometrics, Elsevier, vol. 236(2).
    15. Kong, Yun & Han, Qinkai & Chu, Fulei & Qin, Yechen & Dong, Mingming, 2023. "Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox," Renewable Energy, Elsevier, vol. 219(P1).
    16. Blazsek, Szabolcs & Escribano, Alvaro & Kristof, Erzsebet, 2024. "Global, Arctic, and Antarctic sea ice volume predictions using score-driven threshold climate models," Energy Economics, Elsevier, vol. 134(C).
    17. Hunek, Wojciech P. & Feliks, Tomasz, 2025. "A new set of multivariable predictive control algorithms for time-delayed nonsquare systems of different domains: A minimum-energy examination," Applied Energy, Elsevier, vol. 381(C).
    18. Maja Štimac & Mario Matković & Daria Karasalihović Sedlar, 2023. "Correlations between Hotel Size and Gas Consumption with a Feasibility Analysis of a Fuel Switch—A Coastal Case Study Croatia Adriatic," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    19. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
    20. Santos, José Vicente Cardoso & Perini, Noéle Bissoli & Moret, Marcelo Albano & Nascimento, Erick Giovani Sperandio & Moreira, Davidson Martins, 2021. "Scaling behavior of wind speed in the coast of Brazil and the South Atlantic Ocean: The crossover phenomenon," Energy, Elsevier, vol. 217(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5884-:d:1688072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.