IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i14p6405-d1700590.html
   My bibliography  Save this article

The Application of Wind Power Prediction Based on the NGBoost–GRU Fusion Model in Traffic Renewable Energy System

Author

Listed:
  • Fudong Li

    (School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing 100192, China)

  • Yongjun Gan

    (School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing 100192, China)

  • Xiaolong Li

    (School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract

In the context of the “double carbon” goals and energy transformation, the integration of energy and transportation has emerged as a crucial trend in their coordinated development. Wind power prediction serves as the cornerstone technology for ensuring efficient operations within this integrated framework. This paper introduces a wind power prediction methodology based on an NGBoost–GRU fusion model and devises an innovative dynamic charging optimization strategy for electric vehicles (EVs) through deep collaboration. By integrating the dynamic feature extraction capabilities of GRU for time series data with the strengths of NGBoost in modeling nonlinear relationships and quantifying uncertainties, the proposed approach achieves enhanced performance. Specifically, the dual GRU fusion strategy effectively mitigates error accumulation and leverages spatial clustering to boost data homogeneity. These advancements collectively lead to a significant improvement in the prediction accuracy and reliability of wind power generation. Experiments on the dataset of a wind farm in Gansu Province demonstrate that the model achieves excellent performance, with an RMSE of 36.09 kW and an MAE of 29.96 kW at the 12 h prediction horizon. Based on this predictive capability, a “wind-power-charging collaborative optimization framework” is developed. This framework not only significantly enhances the local consumption rate of wind power but also effectively cuts users’ charging costs by approximately 18.7%, achieving a peak-shaving effect on grid load. As a result, it substantially improves the economic efficiency and stability of system operation. Overall, this study offers novel insights and robust support for optimizing the operation of integrated energy systems.

Suggested Citation

  • Fudong Li & Yongjun Gan & Xiaolong Li, 2025. "The Application of Wind Power Prediction Based on the NGBoost–GRU Fusion Model in Traffic Renewable Energy System," Sustainability, MDPI, vol. 17(14), pages 1-28, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6405-:d:1700590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/14/6405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/14/6405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuejun Li & Xu Lei & Lingli Jiang & Tongguang Yang & Zhenyu Ge, 2024. "A New Strategy: Remaining Useful Life Prediction of Wind Power Bearings Based on Deep Learning under Data Missing Conditions," Mathematics, MDPI, vol. 12(13), pages 1-21, July.
    2. Yan Gao & Baifu Cao & Wenhao Yu & Lu Yi & Fengqi Guo, 2024. "Short-Term Wind Speed Prediction for Bridge Site Area Based on Wavelet Denoising OOA-Transformer," Mathematics, MDPI, vol. 12(12), pages 1-22, June.
    3. Lu, Peng & Ye, Lin & Pei, Ming & Zhao, Yongning & Dai, Binhua & Li, Zhuo, 2022. "Short-term wind power forecasting based on meteorological feature extraction and optimization strategy," Renewable Energy, Elsevier, vol. 184(C), pages 642-661.
    4. Xuehui Wang & Yongsheng Wang & Yongsheng Qi & Jiajing Gao & Fan Yang & Jiaxuan Lu, 2025. "An Ultra-Short-Term Wind Power Prediction Method Based on the Fusion of Multiple Technical Indicators and the XGBoost Algorithm," Energies, MDPI, vol. 18(12), pages 1-21, June.
    5. Sun, Gaiping & Jiang, Chuanwen & Cheng, Pan & Liu, Yangyang & Wang, Xu & Fu, Yang & He, Yang, 2018. "Short-term wind power forecasts by a synthetical similar time series data mining method," Renewable Energy, Elsevier, vol. 115(C), pages 575-584.
    6. Yang, Mao & Jiang, Renxian & Yu, Xinnan & Wang, Bo & Su, Xin & Ma, Chenglian, 2025. "Extraction and application of intrinsic predictable component in day-ahead power prediction for wind farm cluster," Energy, Elsevier, vol. 328(C).
    7. Wan, Anping & Gong, Wenbin & Iqbal, Atif & AL-Bukhaiti, Khalil & Ji, Yunsong & Duer, Stanislaw & Ma, Shidong & Yao, Faren, 2025. "Robust loop shaping design pitch control of wind turbine for maximal power output and reduced loading," Energy, Elsevier, vol. 319(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.
    2. Gang Li & Chen Lin & Yupeng Li, 2025. "Probabilistic Forecasting of Provincial Regional Wind Power Considering Spatio-Temporal Features," Energies, MDPI, vol. 18(3), pages 1-17, January.
    3. Vincenzo Loia & Stefania Tomasiello & Alfredo Vaccaro & Jinwu Gao, 2020. "Using local learning with fuzzy transform: application to short term forecasting problems," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 13-32, March.
    4. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    5. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    6. Tayeb Brahimi, 2019. "Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia," Energies, MDPI, vol. 12(24), pages 1-16, December.
    7. Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
    8. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    9. Yuanzhuo Du & Kun Zhang & Qianzhi Shao & Zhe Chen, 2023. "A Short-Term Prediction Model of Wind Power with Outliers: An Integration of Long Short-Term Memory, Ensemble Empirical Mode Decomposition, and Sample Entropy," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    10. Jonkers, Jef & Avendano, Diego Nieves & Van Wallendael, Glenn & Van Hoecke, Sofie, 2024. "A novel day-ahead regional and probabilistic wind power forecasting framework using deep CNNs and conformalized regression forests," Applied Energy, Elsevier, vol. 361(C).
    11. Yun-Sin Chen & Cheng-Yu Hu & Chun-Yi Li & Jia-Bin Lin & Yi-Che Shih, 2025. "Marine Spatial Planning for Offshore Wind Firms: A Comparison of Global Existing Policies and Data for Energy System Storage," Sustainability, MDPI, vol. 17(13), pages 1-19, June.
    12. Xin He & Yichen Ma & Jiancang Xie & Gang Zhang & Tuo Xie, 2025. "Enhanced Wind Power Forecasting Using Graph Convolutional Networks with Ramp Characterization and Error Correction," Energies, MDPI, vol. 18(11), pages 1-22, May.
    13. Li, Pei-Hao & Pye, Steve & Keppo, Ilkka, 2020. "Using clustering algorithms to characterise uncertain long-term decarbonisation pathways," Applied Energy, Elsevier, vol. 268(C).
    14. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
    15. Zhang, Chu & Ma, Huixin & Hua, Lei & Sun, Wei & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction," Energy, Elsevier, vol. 254(PA).
    16. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.
    17. Konstantinos Konstas & Panos T. Chountalas & Eleni A. Didaskalou & Dimitrios A. Georgakellos, 2023. "A Pragmatic Framework for Data-Driven Decision-Making Process in the Energy Sector: Insights from a Wind Farm Case Study," Energies, MDPI, vol. 16(17), pages 1-26, August.
    18. Vogel, E.E. & Saravia, G. & Kobe, S. & Schumann, R. & Schuster, R., 2018. "A novel method to optimize electricity generation from wind energy," Renewable Energy, Elsevier, vol. 126(C), pages 724-735.
    19. Cui, Yang & He, Yingjie & Xiong, Xiong & Chen, Zhenghong & Li, Fen & Xu, Taotao & Zhang, Fanghong, 2021. "Algorithm for identifying wind power ramp events via novel improved dynamic swinging door," Renewable Energy, Elsevier, vol. 171(C), pages 542-556.
    20. Sunoh Kim & Jin Hur, 2020. "A Probabilistic Modeling Based on Monte Carlo Simulation of Wind Powered EV Charging Stations for Steady-States Security Analysis," Energies, MDPI, vol. 13(20), pages 1-13, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6405-:d:1700590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.