IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2763-d1664774.html
   My bibliography  Save this article

Enhanced Wind Power Forecasting Using Graph Convolutional Networks with Ramp Characterization and Error Correction

Author

Listed:
  • Xin He

    (College of Water Resources and Hydropower, Xi’an University of Technology, Xi’an 710048, China)

  • Yichen Ma

    (School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Jiancang Xie

    (College of Water Resources and Hydropower, Xi’an University of Technology, Xi’an 710048, China)

  • Gang Zhang

    (School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Tuo Xie

    (School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China)

Abstract

The strong volatility of wind power presents persistent challenges to the stable operation of power systems, highlighting the critical need for accurate wind power forecasting to ensure system reliability. This study proposes a wind power prediction approach based on graph convolutional networks, incorporating ramp feature recognition and error correction mechanisms. First, an improved ramp event definition is applied to detect and classify wind power ramp events more accurately, thereby reducing misjudgments caused by short-term fluctuations. Then, a GCN-based model is developed to construct graph representations of various ramp scenarios, allowing for the effective modeling of their coupling relationships. This is integrated with a bidirectional long short-term memory network to enhance prediction performance during power fluctuation periods. Finally, a dynamic error feedback correction mechanism is introduced to iteratively refine the prediction results in real time. Experiments conducted on wind power data from a Belgian wind farm show that the proposed method significantly improves prediction stability and accuracy during ramp events, achieving an approximate 28% improvement compared to conventional models, and demonstrates strong multi-step forecasting capability.

Suggested Citation

  • Xin He & Yichen Ma & Jiancang Xie & Gang Zhang & Tuo Xie, 2025. "Enhanced Wind Power Forecasting Using Graph Convolutional Networks with Ramp Characterization and Error Correction," Energies, MDPI, vol. 18(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2763-:d:1664774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Jianming & Zhang, Liping & Tang, Jingwei & Liu, Zhi, 2023. "A novel transformer ordinal regression network with label diversity for wind power ramp events forecasting," Energy, Elsevier, vol. 280(C).
    2. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    3. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    4. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    5. Zhao, Beizhen & He, Xin & Ran, Shaolin & Zhang, Yong & Cheng, Cheng, 2024. "Spatial correlation learning based on graph neural network for medium-term wind power forecasting," Energy, Elsevier, vol. 296(C).
    6. Lu, Peng & Ye, Lin & Pei, Ming & Zhao, Yongning & Dai, Binhua & Li, Zhuo, 2022. "Short-term wind power forecasting based on meteorological feature extraction and optimization strategy," Renewable Energy, Elsevier, vol. 184(C), pages 642-661.
    7. Ye, Lin & Dai, Binhua & Li, Zhuo & Pei, Ming & Zhao, Yongning & Lu, Peng, 2022. "An ensemble method for short-term wind power prediction considering error correction strategy," Applied Energy, Elsevier, vol. 322(C).
    8. Yang, Mao & Che, Runqi & Yu, Xinnan & Su, Xin, 2024. "Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction," Energy, Elsevier, vol. 302(C).
    9. Zhang, Jie & Cui, Mingjian & Hodge, Bri-Mathias & Florita, Anthony & Freedman, Jeffrey, 2017. "Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales," Energy, Elsevier, vol. 122(C), pages 528-541.
    10. Ye, Lin & Li, Yilin & Pei, Ming & Zhao, Yongning & Li, Zhuo & Lu, Peng, 2022. "A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching," Applied Energy, Elsevier, vol. 327(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuehui Wang & Yongsheng Wang & Yongsheng Qi & Jiajing Gao & Fan Yang & Jiaxuan Lu, 2025. "An Ultra-Short-Term Wind Power Prediction Method Based on the Fusion of Multiple Technical Indicators and the XGBoost Algorithm," Energies, MDPI, vol. 18(12), pages 1-21, June.
    2. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    3. Yongkang Liu & Yi Gu & Yuwei Long & Qinyu Zhang & Yonggang Zhang & Xu Zhou, 2025. "Research on Physically Constrained VMD-CNN-BiLSTM Wind Power Prediction," Sustainability, MDPI, vol. 17(3), pages 1-21, January.
    4. Yang, Mao & Li, Xiangyu & Fan, Fulin & Wang, Bo & Su, Xin & Ma, Chenglian, 2024. "Two-stage day-ahead multi-step prediction of wind power considering time-series information interaction," Energy, Elsevier, vol. 312(C).
    5. Zhang, Yagang & Kong, Xue & Wang, Jingchao & Wang, Hui & Cheng, Xiaodan, 2024. "Wind power forecasting system with data enhancement and algorithm improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    6. Gang Li & Chen Lin & Yupeng Li, 2025. "Probabilistic Forecasting of Provincial Regional Wind Power Considering Spatio-Temporal Features," Energies, MDPI, vol. 18(3), pages 1-17, January.
    7. Yang, Mao & Guo, Yunfeng & Fan, Fulin & Huang, Tao, 2024. "Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering," Energy, Elsevier, vol. 302(C).
    8. Wen-Chang Tsai & Chih-Ming Hong & Chia-Sheng Tu & Whei-Min Lin & Chiung-Hsing Chen, 2023. "A Review of Modern Wind Power Generation Forecasting Technologies," Sustainability, MDPI, vol. 15(14), pages 1-40, July.
    9. Chen, Wenhe & Zhou, Hanting & Cheng, Longsheng & Xia, Min, 2023. "Prediction of regional wind power generation using a multi-objective optimized deep learning model with temporal pattern attention," Energy, Elsevier, vol. 278(PB).
    10. Meng, Anbo & Xie, Zhifeng & Luo, Jianqiang & Zeng, Ying & Xu, Xuancong & Li, Yidian & Wu, Zhenbo & Zhang, Zhan & Zhu, Jianbin & Xian, Zikang & Li, Chen & Yan, Baiping & Yin, Hao, 2023. "An adaptive variational mode decomposition for wind power prediction using convolutional block attention deep learning network," Energy, Elsevier, vol. 282(C).
    11. Yang, Mao & Guo, Yunfeng & Huang, Yutong, 2023. "Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process," Energy, Elsevier, vol. 282(C).
    12. Jianjing Mao & Jian Zhao & Hongtao Zhang & Bo Gu, 2025. "A Novel Hybrid Deep Learning Model for Day-Ahead Wind Power Interval Forecasting," Sustainability, MDPI, vol. 17(7), pages 1-26, April.
    13. Kerschbaum, Alina & Trentmann, Lennart & Hanel, Andreas & Fendt, Sebastian & Spliethoff, Hartmut, 2025. "Methods for analysing renewable energy potentials in energy system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    14. Yao, Xianshuang & Guo, Kangshuai & Lei, Jianqi & Li, Xuanyu, 2024. "Fully connected multi-reservoir echo state networks for wind power prediction," Energy, Elsevier, vol. 312(C).
    15. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    16. Yang, Mao & Wang, Jinxin & Cao, Xudong & Gu, Dake, 2024. "Economic dispatch of microgrid generation-load-storage based on dynamic bi-level game of multiple stakeholders," Energy, Elsevier, vol. 313(C).
    17. Gao, Jiaxin & Cheng, Yuanqi & Zhang, Dongxiao & Chen, Yuntian, 2025. "Physics-constrained wind power forecasting aligned with probability distributions for noise-resilient deep learning," Applied Energy, Elsevier, vol. 383(C).
    18. Yang, Mao & Wang, Da & Zhang, Wei & Yv, Xinnan, 2024. "A centralized power prediction method for large-scale wind power clusters based on dynamic graph neural network," Energy, Elsevier, vol. 310(C).
    19. Zilong, Ti & Yubing, Song & Xiaowei, Deng, 2022. "Spatial-temporal wave height forecast using deep learning and public reanalysis dataset," Applied Energy, Elsevier, vol. 326(C).
    20. Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2763-:d:1664774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.