IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920304591.html
   My bibliography  Save this article

Using clustering algorithms to characterise uncertain long-term decarbonisation pathways

Author

Listed:
  • Li, Pei-Hao
  • Pye, Steve
  • Keppo, Ilkka

Abstract

Long-term decarbonisation pathways to achieve ambitious low-carbon targets involve a range of uncertainties. Different energy system modelling approaches can be used to systematically evaluate the influence of the uncertainties, but this often leads to an unmanageable number of pathways. Summarising the large ensemble through a more limited number of representative pathways, to inform stakeholders, can be challenging. This study thus explores how to identify representative decarbonisation pathways using clustering algorithms, which can assist in grouping similar data points in uncategorised datasets, such as pathway ensembles. However, the suitability of clustering algorithms for pathway characterisation has not been investigated to date. Hence, k-means, hierarchical clustering, Gaussian mixture model, spectral clustering, and density-based clustering are adopted for comparisons. An illustrative pathway ensemble for the United Kingdom is applied to evaluate their performance based on cluster validity indices. Three metric transformations, including power, standardisation and sectoral standardisation, are also applied to create three additional sets of pathways for testing. The k-means algorithm is found to outperform others consistently, although hierarchical clustering might also be applicable if the distribution of pathway proximity is uneven. The results also highlight the utility of the approach in revealing distinctive trade-offs between technologies among the identified representative pathways. For instance, the electrification of heating can be replaced by district heating in the residential sector. The described, novel approach can be applied to characterise other sets of pathways, with greater technological details generated by any energy system models, to reveal insights for long-term decarbonisation.

Suggested Citation

  • Li, Pei-Hao & Pye, Steve & Keppo, Ilkka, 2020. "Using clustering algorithms to characterise uncertain long-term decarbonisation pathways," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304591
    DOI: 10.1016/j.apenergy.2020.114947
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920304591
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    2. Chidean, Mihaela I. & Caamaño, Antonio J. & Ramiro-Bargueño, Julio & Casanova-Mateo, Carlos & Salcedo-Sanz, Sancho, 2018. "Spatio-temporal analysis of wind resource in the Iberian Peninsula with data-coupled clustering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2684-2694.
    3. Yilmaz, S. & Chambers, J. & Patel, M.K., 2019. "Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management," Energy, Elsevier, vol. 180(C), pages 665-677.
    4. Cayla, Jean-Michel & Maïzi, Nadia, 2015. "Integrating household behavior and heterogeneity into the TIMES-Households model," Applied Energy, Elsevier, vol. 139(C), pages 56-67.
    5. Pizarro-Alonso, Amalia & Ravn, Hans & Münster, Marie, 2019. "Uncertainties towards a fossil-free system with high integration of wind energy in long-term planning," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    7. Strielkowski, Wadim & Štreimikienė, Dalia & Bilan, Yuriy, 2017. "Network charging and residential tariffs: A case of household photovoltaics in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 461-473.
    8. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    9. Liao, Nuo & He, Yong, 2018. "Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model," Energy, Elsevier, vol. 158(C), pages 782-795.
    10. Deuten, Sebastiaan & Gómez Vilchez, Jonatan J. & Thiel, Christian, 2020. "Analysis and testing of electric car incentive scenarios in the Netherlands and Norway," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    11. Hughes, Nick & Strachan, Neil & Gross, Robert, 2013. "The structure of uncertainty in future low carbon pathways," Energy Policy, Elsevier, vol. 52(C), pages 45-54.
    12. Dong, Lei & Wang, Lijie & Khahro, Shahnawaz Farhan & Gao, Shuang & Liao, Xiaozhong, 2016. "Wind power day-ahead prediction with cluster analysis of NWP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1206-1212.
    13. Han, Dun & Sun, Mei & Li, Dandan, 2015. "Epidemic process on activity-driven modular networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 354-362.
    14. Price, James & Keppo, Ilkka, 2017. "Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models," Applied Energy, Elsevier, vol. 195(C), pages 356-369.
    15. Li, Ran & Wang, Zhimin & Gu, Chenghong & Li, Furong & Wu, Hao, 2016. "A novel time-of-use tariff design based on Gaussian Mixture Model," Applied Energy, Elsevier, vol. 162(C), pages 1530-1536.
    16. Schütz, Thomas & Schraven, Markus Hans & Fuchs, Marcus & Remmen, Peter & Müller, Dirk, 2018. "Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis," Renewable Energy, Elsevier, vol. 129(PA), pages 570-582.
    17. Knez, Matjaz & Zevnik, Gašper Kozelj & Obrecht, Matevz, 2019. "A review of available chargers for electric vehicles: United States of America, European Union, and Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 284-293.
    18. Liu, Da & Wang, Jilong & Wang, Hui, 2015. "Short-term wind speed forecasting based on spectral clustering and optimised echo state networks," Renewable Energy, Elsevier, vol. 78(C), pages 599-608.
    19. Li, Francis G.N. & Trutnevyte, Evelina, 2017. "Investment appraisal of cost-optimal and near-optimal pathways for the UK electricity sector transition to 2050," Applied Energy, Elsevier, vol. 189(C), pages 89-109.
    20. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
    21. Papadopoulos, Sokratis & Bonczak, Bartosz & Kontokosta, Constantine E., 2018. "Pattern recognition in building energy performance over time using energy benchmarking data," Applied Energy, Elsevier, vol. 221(C), pages 576-586.
    22. Park, Chan-Kook & Kim, Hyun-Jae & Kim, Yang-Soo, 2014. "A study of factors enhancing smart grid consumer engagement," Energy Policy, Elsevier, vol. 72(C), pages 211-218.
    23. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    24. Boudet, Hilary S. & Flora, June A. & Armel, K. Carrie, 2016. "Clustering household energy-saving behaviours by behavioural attribute," Energy Policy, Elsevier, vol. 92(C), pages 444-454.
    25. Unternährer, Jérémy & Moret, Stefano & Joost, Stéphane & Maréchal, François, 2017. "Spatial clustering for district heating integration in urban energy systems: Application to geothermal energy," Applied Energy, Elsevier, vol. 190(C), pages 749-763.
    26. Sun, Gaiping & Jiang, Chuanwen & Cheng, Pan & Liu, Yangyang & Wang, Xu & Fu, Yang & He, Yang, 2018. "Short-term wind power forecasts by a synthetical similar time series data mining method," Renewable Energy, Elsevier, vol. 115(C), pages 575-584.
    27. Mei, H. & Li, Y.P. & Suo, C. & Ma, Y. & Lv, J., 2020. "Analyzing the impact of climate change on energy-economy-carbon nexus system in China," Applied Energy, Elsevier, vol. 262(C).
    28. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    29. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    30. Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
    31. Tattini, Jacopo & Gargiulo, Maurizio & Karlsson, Kenneth, 2018. "Reaching carbon neutral transport sector in Denmark – Evidence from the incorporation of modal shift into the TIMES energy system modeling framework," Energy Policy, Elsevier, vol. 113(C), pages 571-583.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Csereklyei, Zsuzsanna & Anantharama, Nandini & Kallies, Anne, 2021. "Electricity market transitions in Australia: Evidence using model-based clustering," Energy Economics, Elsevier, vol. 103(C).
    2. Bjarnhedinn Gudlaugsson & Dana Abi Ghanem & Huda Dawood & Gobind Pillai & Michael Short, 2022. "A Qualitative Based Causal-Loop Diagram for Understanding Policy Design Challenges for a Sustainable Transition Pathway: The Case of Tees Valley Region, UK," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    3. Kaiyan Wang & Haodong Du & Rong Jia & Hongtao Jia, 2022. "Performance Comparison of Bayesian Deep Learning Model and Traditional Bayesian Neural Network in Short-Term PV Interval Prediction," Sustainability, MDPI, vol. 14(19), pages 1-27, October.
    4. Domínguez, R. & Vitali, S., 2021. "Multi-chronological hierarchical clustering to solve capacity expansion problems with renewable sources," Energy, Elsevier, vol. 227(C).
    5. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Price, James & Keppo, Ilkka, 2017. "Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models," Applied Energy, Elsevier, vol. 195(C), pages 356-369.
    4. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    5. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    6. Wang, Bin & Wang, Shifeng & Tang, Yuanyuan & Tsang, Chi-Wing & Dai, Jinchuan & Leung, Michael K.H. & Lu, Xiao-Ying, 2019. "Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    8. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    9. Chidean, Mihaela I. & Caamaño, Antonio J. & Ramiro-Bargueño, Julio & Casanova-Mateo, Carlos & Salcedo-Sanz, Sancho, 2018. "Spatio-temporal analysis of wind resource in the Iberian Peninsula with data-coupled clustering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2684-2694.
    10. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    11. Zhao, Jing & Guo, Zhenhai & Guo, Yanling & Lin, Wantao & Zhu, Wenjin, 2021. "A self-organizing forecast of day-ahead wind speed: Selective ensemble strategy based on numerical weather predictions," Energy, Elsevier, vol. 218(C).
    12. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Wang, Jianzhou & Dong, Yunxuan & Zhang, Kequan & Guo, Zhenhai, 2017. "A numerical model based on prior distribution fuzzy inference and neural networks," Renewable Energy, Elsevier, vol. 112(C), pages 486-497.
    14. Salvucci, Raffaele & Gargiulo, Maurizio & Karlsson, Kenneth, 2019. "The role of modal shift in decarbonising the Scandinavian transport sector: Applying substitution elasticities in TIMES-Nordic," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Salvucci, Raffaele & Tattini, Jacopo & Gargiulo, Maurizio & Lehtilä, Antti & Karlsson, Kenneth, 2018. "Modelling transport modal shift in TIMES models through elasticities of substitution," Applied Energy, Elsevier, vol. 232(C), pages 740-751.
    16. Wang, Jing & Kang, Lixia & Huang, Xiankun & Liu, Yongzhong, 2021. "An analysis framework for quantitative evaluation of parametric uncertainty in a cooperated energy storage system with multiple energy carriers," Energy, Elsevier, vol. 226(C).
    17. Wang, Huan & Chen, Wenying, 2019. "Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe," Applied Energy, Elsevier, vol. 238(C), pages 1563-1572.
    18. Chen, Yi-kuang & Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland, 2022. "Balancing GHG mitigation and land-use conflicts: Alternative Northern European energy system scenarios," Applied Energy, Elsevier, vol. 310(C).
    19. Yimei Wang & Yongqian Liu & Li Li & David Infield & Shuang Han, 2018. "Short-Term Wind Power Forecasting Based on Clustering Pre-Calculated CFD Method," Energies, MDPI, vol. 11(4), pages 1-19, April.
    20. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.