IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225007789.html
   My bibliography  Save this article

Robust loop shaping design pitch control of wind turbine for maximal power output and reduced loading

Author

Listed:
  • Wan, Anping
  • Gong, Wenbin
  • Iqbal, Atif
  • AL-Bukhaiti, Khalil
  • Ji, Yunsong
  • Duer, Stanislaw
  • Ma, Shidong
  • Yao, Faren

Abstract

Wind energy is increasingly important as a sustainable and renewable energy source, offering clean and pollutant-free power. Offshore wind turbines, in particular, are gaining prominence due to their higher power generation potential compared to onshore systems. However, maximizing energy extraction from these turbines presents significant challenges, with pitch angle control being a critical factor. This research introduces a two-degree-of-freedom robust loop-shaping design controller that leverages individual pitch control to address these challenges. By integrating robust control principles and loop-shaping techniques, the proposed strategy enhances both the stability and dynamic performance of wind turbine systems. The controller is specifically tailored for a 6.8 MW wind turbine system and aims to optimize power output while mitigating structural loads and ensuring system reliability. Individual pitch control enables the proposed method to adaptively manage asymmetric aerodynamic loads on turbine blades, further improving efficiency and extending operational life. A comprehensive comparative analysis with existing control techniques, using simulation benchmarks, demonstrates the superior performance of the proposed strategy in maximizing energy extraction and maintaining operational stability under varying wind conditions. These findings underscore the potential of the proposed controller to address critical challenges in offshore wind energy systems and pave the way for more efficient and reliable power generation.

Suggested Citation

  • Wan, Anping & Gong, Wenbin & Iqbal, Atif & AL-Bukhaiti, Khalil & Ji, Yunsong & Duer, Stanislaw & Ma, Shidong & Yao, Faren, 2025. "Robust loop shaping design pitch control of wind turbine for maximal power output and reduced loading," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007789
    DOI: 10.1016/j.energy.2025.135136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225007789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yancai Xiao & Tieling Zhang & Zeyu Ding & Chunya Li, 2016. "The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters," Energies, MDPI, vol. 9(5), pages 1-17, May.
    2. Raja M. Imran & D. M. Akbar Hussain & Bhawani Shanker Chowdhry, 2018. "Parameterized Disturbance Observer Based Controller to Reduce Cyclic Loads of Wind Turbine," Energies, MDPI, vol. 11(5), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    2. Lei Chen & Xiude Tu & Hongkun Chen & Jun Yang & Yayi Wu & Xin Shu & Li Ren, 2016. "Technical Evaluation of Superconducting Fault Current Limiters Used in a Micro-Grid by Considering the Fault Characteristics of Distributed Generation, Energy Storage and Power Loads," Energies, MDPI, vol. 9(10), pages 1-21, September.
    3. Nejra Beganovic & Jackson G. Njiri & Dirk Söffker, 2018. "Reduction of Structural Loads in Wind Turbines Based on an Adapted Control Strategy Concerning Online Fatigue Damage Evaluation Models," Energies, MDPI, vol. 11(12), pages 1-15, December.
    4. Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
    5. Xing Liu & Jinhua Du & Deliang Liang, 2016. "Analysis and Speed Ripple Mitigation of a Space Vector Pulse Width Modulation-Based Permanent Magnet Synchronous Motor with a Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 9(11), pages 1-15, November.
    6. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    7. Yancai Xiao & Yi Hong & Xiuhai Chen & Wenjian Huo, 2016. "Switching Control of Wind Turbine Sub-Controllers Based on an Active Disturbance Rejection Technique," Energies, MDPI, vol. 9(10), pages 1-19, October.
    8. Jongmin Cheon & Jinwook Kim & Joohoon Lee & Kichang Lee & Youngkiu Choi, 2019. "Development of Hardware-in-the-Loop-Simulation Testbed for Pitch Control System Performance Test," Energies, MDPI, vol. 12(10), pages 1-20, May.
    9. Unai Elosegui & Igor Egana & Alain Ulazia & Gabriel Ibarra-Berastegi, 2018. "Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms," Energies, MDPI, vol. 11(12), pages 1-20, December.
    10. Qixiang Yan & Ibrahim Adamu Tasiu & Hong Chen & Yuting Zhang & Siqi Wu & Zhigang Liu, 2019. "Design and Hardware-in-the-Loop Implementation of Fuzzy-Based Proportional-Integral Control for the Traction Line-Side Converter of a High-Speed Train," Energies, MDPI, vol. 12(21), pages 1-24, October.
    11. Giovanni Pau & Mario Collotta & Vincenzo Maniscalco, 2017. "Bluetooth 5 Energy Management through a Fuzzy-PSO Solution for Mobile Devices of Internet of Things," Energies, MDPI, vol. 10(7), pages 1-22, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.