IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.12863.html
   My bibliography  Save this paper

Price elasticity of electricity demand: Using instrumental variable regressions to address endogeneity and autocorrelation of high-frequency time series

Author

Listed:
  • Silvana Tiedemann

    (Hertie School, Centre for Sustainability, Germany)

  • Raffaele Sgarlato

    (Hertie School, Centre for Sustainability, Germany)

  • Lion Hirth

    (Hertie School, Centre for Sustainability, Germany
    Neon Neue Energie\"okonomik GmbH, Germany)

Abstract

This paper examines empirical methods for estimating the response of aggregated electricity demand to high-frequency price signals, the short-term elasticity of electricity demand. We investigate how the endogeneity of prices and the autocorrelation of the time series, which are particularly pronounced at hourly granularity, affect and distort common estimators. After developing a controlled test environment with synthetic data that replicate key statistical properties of electricity demand, we show that not only the ordinary least square (OLS) estimator is inconsistent (due to simultaneity), but so is a regular instrumental variable (IV) regression (due to autocorrelation). Using wind as an instrument, as it is commonly done, may result in an estimate of the demand elasticity that is inflated by an order of magnitude. We visualize the reason for the Thams bias using causal graphs and show that its magnitude depends on the autocorrelation of both the instrument, and the dependent variable. We further incorporate and adapt two extensions of the IV estimation, conditional IV and nuisance IV, which have recently been proposed by Thams et al. (2022). We show that these extensions can identify the true short-term elasticity in a synthetic setting and are thus particularly promising for future empirical research in this field.

Suggested Citation

  • Silvana Tiedemann & Raffaele Sgarlato & Lion Hirth, 2023. "Price elasticity of electricity demand: Using instrumental variable regressions to address endogeneity and autocorrelation of high-frequency time series," Papers 2306.12863, arXiv.org.
  • Handle: RePEc:arx:papers:2306.12863
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.12863
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Natalia Fabra & David Rapson & Mar Reguant & Jingyuan Wang, 2021. "Estimating the Elasticity to Real-Time Pricing: Evidence from the Spanish Electricity Market," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 425-429, May.
    2. Damien, Paul & Fuentes-García, Ruth & Mena, Ramsés H. & Zarnikau, Jay, 2019. "Impacts of day-ahead versus real-time market prices on wholesale electricity demand in Texas," Energy Economics, Elsevier, vol. 81(C), pages 259-272.
    3. Derya Eryilmaz, Timothy M. Smith, and Frances R. Homans, 2017. "Price Responsiveness in Electricity Markets: Implications for Demand Response in the Midwest," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Tim Schittekatte & Dharik S. Mallapragada & Paul L. Joskow & Richard Schmalensee, 2022. "Electricity Retail Rate Design in a Decarbonized Economy: An Analysis of Time-Of-Use and Critical Peak Pricing," NBER Working Papers 30560, National Bureau of Economic Research, Inc.
    5. Zhou, Yang & Ma, Rong & Su, Yun & Wu, Libo, 2019. "Too big to change: How heterogeneous firms respond to time-of-use electricity price," China Economic Review, Elsevier, vol. 58(C).
    6. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    7. Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
    8. Lijesen, Mark G., 2007. "The real-time price elasticity of electricity," Energy Economics, Elsevier, vol. 29(2), pages 249-258, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirth, Lion & Khanna, Tarun M. & Ruhnau, Oliver, 2024. "How aggregate electricity demand responds to hourly wholesale price fluctuations," Energy Economics, Elsevier, vol. 135(C).
    2. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    3. Bönte, Werner & Nielen, Sebastian & Valitov, Niyaz & Engelmeyer, Torben, 2015. "Price elasticity of demand in the EPEX spot market for electricity—New empirical evidence," Economics Letters, Elsevier, vol. 135(C), pages 5-8.
    4. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2023. "Pricing policies for efficient demand side management in liberalized electricity markets," Economic Modelling, Elsevier, vol. 121(C).
    5. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    6. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.
    7. Enrich, Jacint & Li, Ruoyi & Mizrahi, Alejandro & Reguant, Mar, 2024. "Measuring the impact of time-of-use pricing on electricity consumption: Evidence from Spain," Journal of Environmental Economics and Management, Elsevier, vol. 123(C).
    8. Furió, Dolores & Moreno-del-Castillo, Javier, 2024. "Dynamic demand response to electricity prices: Evidence from the Spanish retail market," Utilities Policy, Elsevier, vol. 88(C).
    9. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    10. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    11. Antonia López Villavicencio & Josep Lluís Raymond Bara, 2006. "The short and long-run determinants of the real exchange rate in Mexico," Working Papers wpdea0606, Department of Applied Economics at Universitat Autonoma of Barcelona.
    12. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    13. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    14. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    15. Yagi, Chihiro & Takeuchi, Kenji, 2024. "Electricity storage or transmission? Comparing social welfare between electricity arbitrages," Energy Economics, Elsevier, vol. 140(C).
    16. Alberto Fuertes, 2022. "External adjustment with a common currency: the case of the euro area," Empirical Economics, Springer, vol. 62(5), pages 2205-2238, May.
    17. C. Lanier Benkard, 2000. "Learning and Forgetting: The Dynamics of Aircraft Production," American Economic Review, American Economic Association, vol. 90(4), pages 1034-1054, September.
    18. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    19. Ireland, Peter N., 1999. "Does the time-consistency problem explain the behavior of inflation in the United States?," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 279-291, October.
    20. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.12863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.