A Benchmark Model for Fixed-Target Arctic Sea Ice Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Diebold, Francis X. & Göbel, Maximilian, 2022. "A benchmark model for fixed-target Arctic sea ice forecasting," Economics Letters, Elsevier, vol. 215(C).
- Francis X. Diebold & Maximilian Gobel, 2021. "A Benchmark Model for Fixed-Target Arctic Sea Ice Forecasting," Papers 2101.10359, arXiv.org, revised Jan 2022.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Brock, William A. & Miller, J. Isaac, 2024.
"Polar amplification in a moist energy balance model: A structural econometric approach to estimation and testing,"
Journal of Econometrics, Elsevier, vol. 245(1).
- William A. Brock & J. Isaac Miller, 2023. "Polar Amplification in a Moist Energy Balance Model: A Structural Econometric Approach to Estimation and Testing," Working Papers 2304, Department of Economics, University of Missouri.
- Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe, 2023.
"Assessing and comparing fixed-target forecasts of Arctic sea ice: Glide charts for feature-engineered linear regression and machine learning models,"
Energy Economics, Elsevier, vol. 124(C).
- Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice:Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," PIER Working Paper Archive 22-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice: Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," Working Papers 22-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Francis X. Diebold & Maximilian Goebel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice: Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," Papers 2206.10721, arXiv.org, revised Jun 2023.
More about this item
Keywords
; ; ; ;JEL classification:
- Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:22-002. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/pen/papers/22-002.html