IDEAS home Printed from https://ideas.repec.org/p/pen/papers/22-002.html

A Benchmark Model for Fixed-Target Arctic Sea Ice Forecasting

Author

Listed:
  • Francis X. Diebold

    (University of Pennsylvania)

  • Maximilian Gobel

    (University of Lisbon)

Abstract

We propose a reduced-form benchmark predictive model (BPM) for ?xed-target forecasting of Arctic sea ice extent, and we provide a case study of its real-time performance for target date September 2020. We visually detail the evolution of the statistically-optimal point, interval, and density forecasts as time passes, new information arrives, and the end of September approaches. Comparison to the BPM may prove useful for evaluating and selecting among various more sophisticated dynamical sea ice models, which are widely used to quantify the likely future evolution of Arctic conditions and their two-way interaction with economic activity.

Suggested Citation

  • Francis X. Diebold & Maximilian Gobel, 2022. "A Benchmark Model for Fixed-Target Arctic Sea Ice Forecasting," PIER Working Paper Archive 22-002, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  • Handle: RePEc:pen:papers:22-002
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/sites/default/files/filevault/22-002.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brock, William A. & Miller, J. Isaac, 2024. "Polar amplification in a moist energy balance model: A structural econometric approach to estimation and testing," Journal of Econometrics, Elsevier, vol. 245(1).
    2. Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe, 2023. "Assessing and comparing fixed-target forecasts of Arctic sea ice: Glide charts for feature-engineered linear regression and machine learning models," Energy Economics, Elsevier, vol. 124(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:22-002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.