Author
Listed:
- Arkadiusz Małek
(Department of Transportation and Informatics, WSEI University, Projektowa 4, 20-209 Lublin, Poland)
- Andrzej Marciniak
(Department of Transportation and Informatics, WSEI University, Projektowa 4, 20-209 Lublin, Poland)
Abstract
Low-emission hydrogen generation systems require large amounts of energy from renewable energy sources. This article characterizes the production of low-emission hydrogen, emphasizing its scale and the necessity for its continuity. For hydrogen production defined in this way, it is possible to select the appropriate renewable energy sources. The research part of the article presents a case study of the continuous production of large amounts of hydrogen. Daily production capacities correspond to the demand for the production of industrial chemicals and artificial fertilizers or for fueling a fleet of hydrogen buses. The production was placed in the Lublin region in Poland, where there is a large demand for low-emission hydrogen and where there are favorable conditions for the production of energy from a photovoltaic–wind mix. Statistical and probabilistic analyses were performed related to the generation of power by a photovoltaic system with a peak power of 3.45 MWp and a wind turbine with an identical maximum power. The conducted research confirmed the complementarity and substitutability relationship between one source and another within the energy mix. Then, unsupervised clustering was applied using the k-Means algorithm to divide the state space generated in the power mix. The clustering results were used to perform an operational analysis of the low-emission hydrogen generation system from a renewable energy sources mix. In the analyzed month of April, 25% of the energy generated in the photovoltaic–wind mix came from the photovoltaic system. The low-emission hydrogen generation process was in states (clusters), ensuring that the operation of the electrolyzer with nominal power amounted to 57% of the total operating time in that month. In May, the share of photovoltaics in the generated power was 45%. The low-emission hydrogen generation process was in states, ensuring that the operation of the electrolyzer with nominal power amounted to 43% of the total time in that month. In the remaining states of the hydrogen generation process, the power must be drawn from the energy storage system. The cluster analysis also showed the functioning of the operating states of the power generation process from the mix, which ensures the charging of the energy storage. The conducted research and analyses can be employed in planning and implementing effective climate and energy transformations in large companies using low-emission hydrogen.
Suggested Citation
Arkadiusz Małek & Andrzej Marciniak, 2025.
"Operational Analysis of Power Generation from a Photovoltaic–Wind Mix and Low-Emission Hydrogen Production,"
Energies, MDPI, vol. 18(10), pages 1-25, May.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:10:p:2431-:d:1652272
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2431-:d:1652272. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.