IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2571-d1656684.html
   My bibliography  Save this article

Determining Energy Production and Consumption Signatures Using Unsupervised Clustering

Author

Listed:
  • Andrzej Marciniak

    (Department of Transportation and Informatics, WSEI University, Projektowa 4, 20-209 Lublin, Poland)

  • Arkadiusz Małek

    (Department of Transportation and Informatics, WSEI University, Projektowa 4, 20-209 Lublin, Poland)

Abstract

The selection of the peak power of a photovoltaic system to meet the energy demand of a building is a key task in the energy transformation. This article presents an algorithm for assessing the correctness of the selection of a photovoltaic system with a peak power of 50 kWp for the needs of a university administration building. This is made possible due to the use of an advanced photovoltaic inverter, which is a device of the Internet of Things and the smart metering system. At the beginning of the review, the authors employed the naked eye measurement data of the time series related to the power production by the photovoltaic system and its consumption by the university building. Then, traditional statistical analyses were performed, characterizing the generated power divided into self-consumption power and that fed into the power grid. The analysis of the total consumed power was performed with the division into the power produced by the photovoltaic system and that taken from the power grid. The analyses conducted were subjected to expert validation aimed at explaining the nature of the behavior of the power generation and consumption systems. The main goal of this article is to determine the signatures of the power generated by the photovoltaic system and consumed by the administration building. As a result of unsupervised clustering, the power generation and consumption space were divided into states. These were then termed based on their nature and their usefulness in managing the power produced and consumed. Presentation of clustering results in the form of heatmaps allows for localization of specific states at specific times of the day. This leads to their better understanding and quantification. The signatures of power generated by the photovoltaic system and consumed by the university building confirmed the possibility of using an energy storage system. The presented computational algorithm is the basis for determining the correctness of the photovoltaic system selection for the current energy needs of the building. It can be the basis for further analysis related to the prediction of both the power generated by Renewable Energy Sources and the energy consumed by diverse types of buildings.

Suggested Citation

  • Andrzej Marciniak & Arkadiusz Małek, 2025. "Determining Energy Production and Consumption Signatures Using Unsupervised Clustering," Energies, MDPI, vol. 18(10), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2571-:d:1656684
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    2. Osama Ayadi & Bilal Rinchi & Sameer Al-Dahidi & Mohammed E. B. Abdalla & Mohammed Al-Mahmodi, 2024. "Techno-Economic Assessment of Bifacial Photovoltaic Systems under Desert Climatic Conditions," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    3. Abderrahim Lakhouit & Nada Alhathlaul & Chakib El Mokhi & Hanaa Hachimi, 2025. "Assessing the Environmental Impact of PV Emissions and Sustainability Challenges," Sustainability, MDPI, vol. 17(7), pages 1-19, March.
    4. Suwastika Naidu & Anand Chand & Atishwar Pandaram & Sunia Vosikata, 2024. "Electricity Consumption, Renewable Energy Production, and Current Account of Organisation for Economic Co-Operation and Development Countries: Implications for Sustainability," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
    5. Claudio Caromba & Corné Schutte & Jean van Laar, 2023. "Application of Clustering Techniques for Improved Energy Benchmarking on Deep-Level Mines," Energies, MDPI, vol. 16(19), pages 1-18, September.
    6. Oscar A. Bustos-Brinez & Javier Rosero Garcia, 2025. "Clustering Analysis for Active and Reactive Energy Consumption Data Based on AMI Measurements," Energies, MDPI, vol. 18(1), pages 1-22, January.
    7. Arkadiusz Małek & Andrzej Marciniak & Tomasz Bednarczyk, 2024. "Probabilistic Analysis of Electricity Production from a Photovoltaic–Wind Energy Mix for Sustainable Transport Needs," Sustainability, MDPI, vol. 16(23), pages 1-23, November.
    8. Muhammad Zubair & Shuyan Chen & Yongfeng Ma & Xiaojian Hu, 2023. "A Systematic Review on Carbon Dioxide (CO 2 ) Emission Measurement Methods under PRISMA Guidelines: Transportation Sustainability and Development Programs," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    9. Luka Budin & Marko Delimar, 2025. "Renewable Energy Community Sizing Based on Stochastic Optimization and Unsupervised Clustering," Sustainability, MDPI, vol. 17(2), pages 1-25, January.
    10. Iwona Bąk & Emilia Barej-Kaczmarek & Maciej Oesterreich & Beata Szczecińska & Katarzyna Wawrzyniak & Piotr Sulikowski, 2024. "The Impact of the Production and Consumption of Renewable Energy on Economic Growth—The Case of Poland," Sustainability, MDPI, vol. 16(24), pages 1-27, December.
    11. Suzan Sameer Issa & Mosab I. Tabash & Adel Ahmed & Hosam Alden Riyadh & Mohammed Alnahhal & Manishkumar Varma, 2024. "Investigating the Relationship between Energy Consumption and Environmental Degradation with the Moderating Influence of Technological Innovation," JRFM, MDPI, vol. 17(9), pages 1-17, September.
    12. Hamed Rafiee & Milad Aminizadeh & Elham Mehrparvar Hosseini & Hanane Aghasafari & Ali Mohammadi, 2022. "A Cluster Analysis on the Energy Use Indicators and Carbon Footprint of Irrigated Wheat Cropping Systems," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arkadiusz Małek & Andrzej Marciniak, 2025. "Operational Analysis of Power Generation from a Photovoltaic–Wind Mix and Low-Emission Hydrogen Production," Energies, MDPI, vol. 18(10), pages 1-25, May.
    2. Harutyunyan, Artur & Badyda, Krzysztof & Wołowicz, Marcin, 2025. "Analyzing of different repowering methods on the example of 300 MW existing steam cycle power plant using gatecycle™ software," Energy, Elsevier, vol. 314(C).
    3. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    4. Hugo Gaspar Hernandez-Palma & Dairo J. Novoa & Jorge Enrique Taboada à lvarez, 2024. "New Trends in Green Projects Aimed at Clean Energy: An Analysis of the Scientific Literature," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 278-286, November.
    5. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    6. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    7. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).
    8. Abdol Aziz Shahraki & Hossein Mollashahi, 2025. "House building techniques for achieving sustainable development goals," Natural Resources Forum, Blackwell Publishing, vol. 49(2), pages 1859-1879, May.
    9. Jining Wang & Xuewei Zhao & Lei Wang, 2024. "Prediction of China’s Carbon Price Based on the Genetic Algorithm–Particle Swarm Optimization–Back Propagation Neural Network Model," Sustainability, MDPI, vol. 17(1), pages 1-18, December.
    10. Hagreaves Kumba & Oludolapo A. Olanrewaju & Ratidzo Pasipamire, 2024. "Integration of Renewable Energy Technologies for Sustainable Development in South Africa: A Focus on Grid-Connected PV Systems," Energies, MDPI, vol. 17(12), pages 1-22, June.
    11. Ramesh Chitharaj & Hariprasad Perumal & Mohammed Almeshaal & P. Manoj Kumar, 2025. "Optimizing Performance of a Solar Flat Plate Collector for Sustainable Operation Using Box–Behnken Design (BBD)," Sustainability, MDPI, vol. 17(2), pages 1-23, January.
    12. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    13. Junqiu Fan & Jing Zhang & Long Yuan & Rujing Yan & Yu He & Weixing Zhao & Nang Nin, 2024. "Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    14. Georgios Giakoumakis & Dimitrios Sidiras, 2025. "Production and Storage of Hydrogen from Biomass and Other Sources: Technologies and Policies," Energies, MDPI, vol. 18(3), pages 1-41, January.
    15. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    16. Asif Raihan & Sadman Anjum Joarder & Tapan Sarker & Blanka Gosik & Dariusz Kusz & Grzegorz Zimon, 2024. "Renewable Energy in Nepal: Current State and Future Outlook," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 395-407, November.
    17. Heitor Silva & Clara Rodrigues & Hugo Farias & Felipe Silva & Maria Silva, 2025. "Resilience in Social Housing Projects from Architecture Competitions in Portugal and Brazil (2013–2023): Evaluating Flexibility, Environmental Adequacy, and Comfort," Sustainability, MDPI, vol. 17(12), pages 1-21, June.
    18. Arkadiusz Małek, 2025. "Low-Emission Hydrogen for Transport—A Technology Overview from Hydrogen Production to Its Use to Power Vehicles," Energies, MDPI, vol. 18(16), pages 1-32, August.
    19. Zhang, Xiao & Xue, Rui & Zhou, Runfa & Xia, Fan & Yu, Yadong & Zhang, Xiaosong, 2025. "Research on the optimal absorption refrigeration configurations of screened low-GWP organic working fluids via pinch technology," Energy, Elsevier, vol. 320(C).
    20. Sinha, Shruti & Sankar Rao, Chinta & Kumar, Abhishankar & Venkata Surya, Dadi & Basak, Tanmay, 2024. "Exploring and understanding the microwave-assisted pyrolysis of waste lignocellulose biomass using gradient boosting regression machine learning model," Renewable Energy, Elsevier, vol. 231(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2571-:d:1656684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.