IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5209-d1098019.html
   My bibliography  Save this article

Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer

Author

Listed:
  • Ahmed Hussain Elmetwaly

    (The Higher Institute of Engineering at El-Shorouk City, El-Shorouk Academy, Cairo 11837, Egypt)

  • Ramy Adel Younis

    (The Higher Institute of Engineering at El-Shorouk City, El-Shorouk Academy, Cairo 11837, Egypt)

  • Abdelazeem Abdallah Abdelsalam

    (Electrical Engineering Department, Faculty of Engineering, Suez Canal University, Ismailia 41522, Egypt)

  • Ahmed Ibrahim Omar

    (The Higher Institute of Engineering at El-Shorouk City, El-Shorouk Academy, Cairo 11837, Egypt)

  • Mohamed Metwally Mahmoud

    (Electrical Engineering Department, Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt)

  • Faisal Alsaif

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Adel El-Shahat

    (Energy Technology Program, School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA)

  • Mohamed Attya Saad

    (The Higher Institute of Engineering at El-Shorouk City, El-Shorouk Academy, Cairo 11837, Egypt)

Abstract

Changes in climatic circumstances, as well as intermittency, which has a significant impact on the overall energy system output from renewable energy sources (RESs), require the development of control strategies for extracting the maximum power available from RESs. To accomplish this task, several techniques have been developed. An efficient maximum power point tracking (MPPT) technique should be utilized to guarantee that both wind-generation and PV-generation systems provide their full advantages. In this paper, a new MPPT approach with jellyfish search optimization (JSO) is developed; in addition, a unified power-quality conditioner (UPQC) is utilized to enhance the performance of the microgrid (MG) and to solve the power-quality issues for the sensitive load. The MG, which includes a photovoltaic (PV), a wind turbine, and a fuel cell battery, is examined and modeled for uniform and nonuniform wind speed and solar irradiance. A comparison between the developed algorithm and different maximum power tracking algorithms is presented. Additionally, four case studies are carried out to verify the effectiveness of the introduced UPQC in enhancing power-quality problems. The research outcome shows high performance from the developed algorithm when assessed with additional algorithms. MATLAB/Simulink software is utilized for the simulation of the wind, PV, and FC control systems. However, experiment validation tests are given under the same condition of PV irradiation to validate the simulation results. The experimental validation is executed by utilizing the PV module simulation model, threefold, 23 V/2A CO3208-1A with solar altitude emulator CO3208-1B board, and the results are compared to the simulation results.

Suggested Citation

  • Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5209-:d:1098019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haidar Islam & Saad Mekhilef & Noraisyah Binti Mohamed Shah & Tey Kok Soon & Mehdi Seyedmahmousian & Ben Horan & Alex Stojcevski, 2018. "Performance Evaluation of Maximum Power Point Tracking Approaches and Photovoltaic Systems," Energies, MDPI, vol. 11(2), pages 1-24, February.
    2. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    3. George E. Halkos & Eleni-Christina Gkampoura, 2020. "Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources," Energies, MDPI, vol. 13(11), pages 1-19, June.
    4. Ioannis Bouloumpasis & Panagis Vovos & Konstantinos Georgakas & Nicholas A. Vovos, 2015. "Current Harmonics Compensation in Microgrids Exploiting the Power Electronics Interfaces of Renewable Energy Sources," Energies, MDPI, vol. 8(4), pages 1-17, March.
    5. Rahmat Aazami & Omid Heydari & Jafar Tavoosi & Mohammadamin Shirkhani & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    6. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    7. Afroz Alam & Preeti Verma & Mohd Tariq & Adil Sarwar & Basem Alamri & Noore Zahra & Shabana Urooj, 2021. "Jellyfish Search Optimization Algorithm for MPP Tracking of PV System," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    8. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussain A. Alhaiz & Ahmed S. Alsafran & Ali H. Almarhoon, 2023. "Single-Phase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-28, July.
    2. Sirine Rabah & Aida Zaier & Jaime Lloret & Hassen Dahman, 2023. "Efficiency Enhancement of a Hybrid Sustainable Energy Harvesting System Using HHHOPSO-MPPT for IoT Devices," Sustainability, MDPI, vol. 15(13), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    3. Mehdi Seyedmahmoudian & Gokul Sidarth Thirunavukkarasu & Elmira Jamei & Tey Kok Soon & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2020. "A Sustainable Distributed Building Integrated Photo-Voltaic System Architecture with a Single Radial Movement Optimization Based MPPT Controller," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    4. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
    5. Alfredo Gil-Velasco & Carlos Aguilar-Castillo, 2021. "A Modification of the Perturb and Observe Method to Improve the Energy Harvesting of PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-12, April.
    6. Radosław Wolniak & Bożena Skotnicka-Zasadzień, 2023. "Development of Wind Energy in EU Countries as an Alternative Resource to Fossil Fuels in the Years 2016–2022," Resources, MDPI, vol. 12(8), pages 1-33, August.
    7. Mehedi, I.M. & Salam, Z. & Ramli, M.Z. & Chin, V.J. & Bassi, H. & Rawa, M.J.H. & Abdullah, M.P., 2021. "Critical evaluation and review of partial shading mitigation methods for grid-connected PV system using hardware solutions: The module-level and array-level approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    9. Muhammad Hafeez Mohamed Hariri & Mohd Khairunaz Mat Desa & Syafrudin Masri & Muhammad Ammirrul Atiqi Mohd Zainuri, 2020. "Grid-Connected PV Generation System—Components and Challenges: A Review," Energies, MDPI, vol. 13(17), pages 1-28, August.
    10. Fatemehsadat Mirshafiee & Emad Shahbazi & Mohadeseh Safi & Rituraj Rituraj, 2023. "Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study," Energies, MDPI, vol. 16(1), pages 1-20, January.
    11. Musong L. Katche & Augustine B. Makokha & Siagi O. Zachary & Muyiwa S. Adaramola, 2023. "A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems," Energies, MDPI, vol. 16(5), pages 1-23, February.
    12. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.
    13. Aranzazu D. Martin & Juan M. Cano & Reyes S. Herrera & Jesus R. Vazquez, 2019. "Wireless Sliding MPPT Control of Photovoltaic Systems in Distributed Generation Systems," Energies, MDPI, vol. 12(17), pages 1-16, August.
    14. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    15. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    16. Md Jahidur Rahman & Tahar Tafticht & Mamadou Lamine Doumbia & Iqbal Messaïf, 2023. "Optimal Inverter Control Strategies for a PV Power Generation with Battery Storage System in Microgrid," Energies, MDPI, vol. 16(10), pages 1-36, May.
    17. Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.
    18. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.
    19. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    20. Mahsa Dehghan Manshadi & Milad Mousavi & M. Soltani & Amir Mosavi & Levente Kovacs, 2022. "Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System," Energies, MDPI, vol. 15(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5209-:d:1098019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.