IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0311177.html
   My bibliography  Save this article

Arithmetic optimization based MPPT for photovoltaic systems operating under nonuniform situations

Author

Listed:
  • Maheshwari Adaikkappan
  • Nageswari Sathiyamoorthy
  • Durga Devi Ravichandran
  • Karthikeyan Balasubramani
  • Sundararaju Karuppannan
  • Ramasamy Palanisamy
  • Zakaria M S Elbarbary
  • Saad F Al-Gahtani
  • Ahmed I Omar

Abstract

Photovoltaic (PV) modules may encounter nonuniform situations that reduce their useable power volume, causing ineffective maximum power point tracking (MPPT). Moreover, due to the incorporation of bypass diodes, power-voltage (P-V) graph has multi-peaks when each component of the module receives different solar irradiation. This paper proposes a solution to this problem using an arithmetic optimization algorithm (AOA) for MPPT in PV systems operating in nonuniform situations. The non-operational regions associated with the voltage are excluded using a single-ended primary inductance converter (SEPIC) with voltage step-up and step-down capability. The AOA-MPPT algorithm gets current and voltage as inputs from the PV modules. It computes the converter’s duty cycle and regulates the operational point to keep MPP under all working conditions. The proposed AOA-MPPT’s efficacy under different insolation patterns has been validated using three nonuniform conditions in terms of convergence, tracking speed, steady state oscillations, and tracking efficiency. In simulations, the proposed AOA-MPPT method and SEPIC converter demonstrated quick response and excellent steady-state performance. The tracking efficiency of the AOA-MPPT is above 99% and settling time is 200 to 300ms for all three non-uniform conditions.

Suggested Citation

  • Maheshwari Adaikkappan & Nageswari Sathiyamoorthy & Durga Devi Ravichandran & Karthikeyan Balasubramani & Sundararaju Karuppannan & Ramasamy Palanisamy & Zakaria M S Elbarbary & Saad F Al-Gahtani & Ah, 2024. "Arithmetic optimization based MPPT for photovoltaic systems operating under nonuniform situations," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-26, December.
  • Handle: RePEc:plo:pone00:0311177
    DOI: 10.1371/journal.pone.0311177
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311177
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0311177&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0311177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reshma Gopi, R. & Sreejith, S., 2018. "Converter topologies in photovoltaic applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1-14.
    2. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    3. Izhar Ul Haq & Qudrat Khan & Safeer Ullah & Shahid Ahmed Khan & Rini Akmeliawati & Mehmood Ashraf Khan & Jamshed Iqbal, 2022. "Neural network-based adaptive global sliding mode MPPT controller design for stand-alone photovoltaic systems," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T Anuradha Devi & G Srinivasa Rao & T Anil Kumar & B Srikanth Goud & Ch Rami Reddy & Mbadjoun Wapet Daniel Eutyche & Flah Aymen & Claude Ziad El-Bayedh & Habib Kraiem & Vojtech Blazek, 2024. "Hybrid optimal-FOPID based UPQC for reducing harmonics and compensate load power in renewable energy sources grid connected system," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-53, May.
    2. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    3. Md Ohirul Qays & Yonis Buswig & Md Liton Hossain & Ahmed Abu-Siada, 2020. "Active Charge Balancing Strategy Using the State of Charge Estimation Technique for a PV-Battery Hybrid System," Energies, MDPI, vol. 13(13), pages 1-16, July.
    4. Guohong Lai & Guoping Zhang & Shaowu Li, 2024. "An MPPT Control Strategy Based on Current Constraint Relationships for a Photovoltaic System with a Battery or Supercapacitor," Energies, MDPI, vol. 17(16), pages 1-27, August.
    5. Habib Kraiem & Aymen Flah & Naoui Mohamed & Mohamed H. B. Messaoud & Essam A. Al-Ammar & Ahmed Althobaiti & Abdullah Alhumaidi Alotaibi & Michał Jasiński & Vishnu Suresh & Zbigniew Leonowicz & Elżbiet, 2022. "Decreasing the Battery Recharge Time if Using a Fuzzy Based Power Management Loop for an Isolated Micro-Grid Farm," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    6. Julio López Seguel & Seleme I. Seleme & Lenin M. F. Morais, 2022. "Comparative Study of Buck-Boost, SEPIC, Cuk and Zeta DC-DC Converters Using Different MPPT Methods for Photovoltaic Applications," Energies, MDPI, vol. 15(21), pages 1-26, October.
    7. Hussain A. Alhaiz & Ahmed S. Alsafran & Ali H. Almarhoon, 2023. "Single-Phase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-28, July.
    8. Sirine Rabah & Aida Zaier & Jaime Lloret & Hassen Dahman, 2023. "Efficiency Enhancement of a Hybrid Sustainable Energy Harvesting System Using HHHOPSO-MPPT for IoT Devices," Sustainability, MDPI, vol. 15(13), pages 1-28, June.
    9. Shaowu Li, 2021. "Circuit Parameter Range of Photovoltaic System to Correctly Use the MPP Linear Model of Photovoltaic Cell," Energies, MDPI, vol. 14(13), pages 1-27, July.
    10. Shaik Nyamathulla & Dhanamjayulu Chittathuru, 2023. "A Review of Multilevel Inverter Topologies for Grid-Connected Sustainable Solar Photovoltaic Systems," Sustainability, MDPI, vol. 15(18), pages 1-44, September.
    11. Ali Bughneda & Mohamed Salem & Anna Richelli & Dahaman Ishak & Salah Alatai, 2021. "Review of Multilevel Inverters for PV Energy System Applications," Energies, MDPI, vol. 14(6), pages 1-23, March.
    12. Shaowu Li & Kunyi Chen & Qin Li & Qing Ai, 2022. "A Variable-Weather-Parameter MPPT Method Based on Equation Solution for Photovoltaic System with DC Bus," Energies, MDPI, vol. 15(18), pages 1-25, September.
    13. Hsen Abidi & Lilia Sidhom & Ines Chihi, 2023. "Systematic Literature Review and Benchmarking for Photovoltaic MPPT Techniques," Energies, MDPI, vol. 16(8), pages 1-45, April.
    14. Hossein Gholizadeh & Reza Sharifi Shahrivar & Mir Reza Hashemi & Ebrahim Afjei & Saman A. Gorji, 2021. "Design and Implementation a Single-Switch Step-Up DC-DC Converter Based on Cascaded Boost and Luo Converters," Energies, MDPI, vol. 14(12), pages 1-18, June.
    15. Nazari, Mostafa & Darvishi Nejad, Hossein & Mohammadzadeh, Ardashir & Zhang, Chunwei, 2024. "Multi-variable fuzzy adaptive time-varying sliding mode control (MVFATVSMC) of the reverse osmosis-photovoltaic desalination system," Energy, Elsevier, vol. 309(C).
    16. Jan Iwaszkiewicz & Piotr Mysiak & Adam Muc, 2025. "Current Controlled AC/DC Converter and Its Performance—A Mathematical Model," Energies, MDPI, vol. 18(2), pages 1-26, January.
    17. Hossein Gholizadeh & Saman A. Gorji & Ebrahim Afjei & Dezso Sera, 2021. "Design and Implementation of a New Cuk-Based Step-Up DC–DC Converter," Energies, MDPI, vol. 14(21), pages 1-18, October.
    18. Qingpeng Cao & Moses Olabhele Esangbedo & Sijun Bai & Caroline Olufunke Esangbedo, 2019. "Grey SWARA-FUCOM Weighting Method for Contractor Selection MCDM Problem: A Case Study of Floating Solar Panel Energy System Installation," Energies, MDPI, vol. 12(13), pages 1-30, June.
    19. Jianwen Cao & Bizhong Xia & Jie Zhou, 2021. "An Active Equalization Method for Lithium-ion Batteries Based on Flyback Transformer and Variable Step Size Generalized Predictive Control," Energies, MDPI, vol. 14(1), pages 1-25, January.
    20. Muhammad Shahid Wasim & Muhammad Amjad & Muhammad Abbas Abbasi & Abdul Rauf Bhatti & Akhtar Rasool, 2023. "An improved grasshopper-based MPPT approach to reduce tracking time and startup oscillations in photovoltaic system under partial shading conditions," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-24, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.