IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6975-d663618.html
   My bibliography  Save this article

Design and Implementation of a New Cuk-Based Step-Up DC–DC Converter

Author

Listed:
  • Hossein Gholizadeh

    (Faculty of Electrical Engineering, Shahid Beheshti University, Tehran 25529, Iran)

  • Saman A. Gorji

    (School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, QLD 4001, Australia
    Centre for Clean Energy Technologies and Practices, Queensland University of Technology, Brisbane, QLD 4001, Australia)

  • Ebrahim Afjei

    (Faculty of Electrical Engineering, Shahid Beheshti University, Tehran 25529, Iran)

  • Dezso Sera

    (School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, QLD 4001, Australia
    Centre for Clean Energy Technologies and Practices, Queensland University of Technology, Brisbane, QLD 4001, Australia)

Abstract

This study proposes a novel modified Cuk converter. The proposed converter attempts to resolve the limitations of the conventional converters, such as voltage gain limitations of a canonical Cuk converter. Therefore, the mentioned improvement has made the proposed converters more compatible for renewable energy applications. Moreover, the increase of the voltage gain in the proposed converter has not impacted the efficiency or the voltage stress of the switches, which is common in other voltage boosting techniques, such as cascading methods. Furthermore, the advantages of a Cuk converter, such as continuity of the input current, have been maintained. The average voltage/current stresses of the semiconductor devices and various types of power losses have been calculated and compared with the existing topologies. Moreover, the non-ideal voltage gain of the proposed converters was compared with the other high step-up topologies. Eventually, the simulation results with PLECS, along with the experiments on an 120 W prototype, have been presented for validation.

Suggested Citation

  • Hossein Gholizadeh & Saman A. Gorji & Ebrahim Afjei & Dezso Sera, 2021. "Design and Implementation of a New Cuk-Based Step-Up DC–DC Converter," Energies, MDPI, vol. 14(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6975-:d:663618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reshma Gopi, R. & Sreejith, S., 2018. "Converter topologies in photovoltaic applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1-14.
    2. Sri Revathi, B. & Prabhakar, M., 2016. "Non isolated high gain DC-DC converter topologies for PV applications – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 920-933.
    3. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tohid Rahimi & Md Rabiul Islam & Hossein Gholizadeh & Saeed Mahdizadeh & Ebrahim Afjei, 2021. "Design and Implementation of a High Step-Up DC-DC Converter Based on the Conventional Boost and Buck-Boost Converters with High Value of the Efficiency Suitable for Renewable Application," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
    2. Khaled Osmani & Ahmad Haddad & Mohammad Alkhedher & Thierry Lemenand & Bruno Castanier & Mohamad Ramadan, 2023. "A Novel MPPT-Based Lithium-Ion Battery Solar Charger for Operation under Fluctuating Irradiance Conditions," Sustainability, MDPI, vol. 15(12), pages 1-31, June.
    3. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    4. Hossein Gholizadeh & Reza Sharifi Shahrivar & Mir Reza Hashemi & Ebrahim Afjei & Saman A. Gorji, 2021. "Design and Implementation a Single-Switch Step-Up DC-DC Converter Based on Cascaded Boost and Luo Converters," Energies, MDPI, vol. 14(12), pages 1-18, June.
    5. Goudarzian, Alireza & Khosravi, Adel & Raeisi, Heidar Ali, 2020. "Analysis of a step-up dc/dc converter with capability of right-half plane zero cancellation," Renewable Energy, Elsevier, vol. 157(C), pages 1156-1170.
    6. Ahmad Alzahrani & Pourya Shamsi & Mehdi Ferdowsi, 2020. "Interleaved Multistage Step-Up Topologies with Voltage Multiplier Cells," Energies, MDPI, vol. 13(22), pages 1-18, November.
    7. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    8. Fabio Corti & Antonino Laudani & Gabriele Maria Lozito & Martina Palermo & Michele Quercio & Francesco Pattini & Stefano Rampino, 2023. "Dynamic Analysis of a Supercapacitor DC-Link in Photovoltaic Conversion Applications," Energies, MDPI, vol. 16(16), pages 1-19, August.
    9. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    10. Muhannad Alaraj & Anirudh Dube & Ibrahim Alsaidan & Mohammad Rizwan & Majid Jamil, 2021. "Design and Development of a Proficient Converter for Solar Photovoltaic Based Sustainable Power Generating System," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    11. Md Ohirul Qays & Yonis Buswig & Md Liton Hossain & Ahmed Abu-Siada, 2020. "Active Charge Balancing Strategy Using the State of Charge Estimation Technique for a PV-Battery Hybrid System," Energies, MDPI, vol. 13(13), pages 1-16, July.
    12. Sajid Sarwar & Muhammad Yaqoob Javed & Mujtaba Hussain Jaffery & Muhammad Saqib Ashraf & Muhammad Talha Naveed & Muhammad Annas Hafeez, 2022. "Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions," Energies, MDPI, vol. 15(13), pages 1-39, June.
    13. Shaowu Li, 2021. "Circuit Parameter Range of Photovoltaic System to Correctly Use the MPP Linear Model of Photovoltaic Cell," Energies, MDPI, vol. 14(13), pages 1-27, July.
    14. Ali Bughneda & Mohamed Salem & Anna Richelli & Dahaman Ishak & Salah Alatai, 2021. "Review of Multilevel Inverters for PV Energy System Applications," Energies, MDPI, vol. 14(6), pages 1-23, March.
    15. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    16. Shaowu Li & Kunyi Chen & Qin Li & Qing Ai, 2022. "A Variable-Weather-Parameter MPPT Method Based on Equation Solution for Photovoltaic System with DC Bus," Energies, MDPI, vol. 15(18), pages 1-25, September.
    17. Hsen Abidi & Lilia Sidhom & Ines Chihi, 2023. "Systematic Literature Review and Benchmarking for Photovoltaic MPPT Techniques," Energies, MDPI, vol. 16(8), pages 1-45, April.
    18. Ankit, & Sahoo, Sarat Kumar & Sukchai, Sukruedee & Yanine, Franco Fernando, 2018. "Review and comparative study of single-stage inverters for a PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 962-986.
    19. Márcio R. S. de Carvalho & Rafael C. Neto & Eduardo J. Barbosa & Leonardo R. Limongi & Fabrício Bradaschia & Marcelo C. Cavalcanti, 2021. "An Overview of Voltage Boosting Techniques and Step-Up DC-DC Converters Topologies for PV Applications," Energies, MDPI, vol. 14(24), pages 1-25, December.
    20. Muhammad Hafeez Mohamed Hariri & Mohd Khairunaz Mat Desa & Syafrudin Masri & Muhammad Ammirrul Atiqi Mohd Zainuri, 2020. "Grid-Connected PV Generation System—Components and Challenges: A Review," Energies, MDPI, vol. 13(17), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6975-:d:663618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.