IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925005793.html
   My bibliography  Save this article

Advancements in water electrolysis technologies and enhanced storage solutions for green hydrogen using renewable energy sources

Author

Listed:
  • Christopher Selvam, D.
  • Devarajan, Yuvarajan
  • Raja, T.
  • Vickram, Sundaram

Abstract

Hydrogen plays a vital role in the low-carbon energy transition due to its versatility as a clean energy carrier. However, scaling green hydrogen production using renewable energy presents challenges. This review examines recent advancements in water electrolysis technologies powered by renewable sources such as wind, solar, geothermal, hydropower, and biomass, focusing on Proton Exchange Membranes (PEMs), Solid Oxide Electrolyzers (SOEs), and emerging Anion Exchange Membrane (AEM) technologies. Key findings show that combining offshore wind and Concentrated Solar Power (CSP) with electrolyzers boosts hydrogen yields while lowering costs. Geothermal and hydropower provide stable power for continuous production, while biomass gasification and pyrolysis, integrated with carbon capture, offer sustainable hydrogen pathways. To meet the International Energy Agency's goal of reducing hydrogen costs to under $2/kg, scaling up electrolysis, improving energy storage, and expanding infrastructure are crucial. The review also highlights the role of digital technologies, such as smart grids and AI-driven systems, in improving efficiency and enabling decentralized hydrogen production. Strong policy support, infrastructure investments, and ongoing innovation are essential for advancing the hydrogen economy and achieving global decarbonization targets.

Suggested Citation

  • Christopher Selvam, D. & Devarajan, Yuvarajan & Raja, T. & Vickram, Sundaram, 2025. "Advancements in water electrolysis technologies and enhanced storage solutions for green hydrogen using renewable energy sources," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005793
    DOI: 10.1016/j.apenergy.2025.125849
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925005793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.