IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1872-d1629787.html
   My bibliography  Save this article

Techno-Economic Analysis of Geospatial Green Hydrogen Potential Using Solar Photovoltaic in Niger: Application of PEM and Alkaline Water Electrolyzers

Author

Listed:
  • Bachirou Djibo Boubé

    (Department of Physics, Faculty of Sciences and Techniques, Abdou Moumouni University (UAM), Niamey BP 10662, Niger
    West African Centre for Sustainable Rural Transformation (WAC-SRT), African Excellence Centre, Abdou Moumouni University (UAM), Niamey BP 10662, Niger
    Doctorate Research Program in Climate Change and Energy (DRP-CCE), West Africa Sciences Climate and Land-Use (WASCAL), Niamey BP 10662, Niger)

  • Ramchandra Bhandari

    (Institute for Technology and Resources Management in the Tropics and Subtropics, TH Köln (University of Applied Sciences), 50678 Cologne, Germany)

  • Moussa Mounkaila Saley

    (Department of Physics, Faculty of Sciences and Techniques, Abdou Moumouni University (UAM), Niamey BP 10662, Niger
    Doctorate Research Program in Climate Change and Energy (DRP-CCE), West Africa Sciences Climate and Land-Use (WASCAL), Niamey BP 10662, Niger)

  • Abdou Latif Bonkaney

    (Department of Physics, Faculty of Sciences and Techniques, Abdou Moumouni University (UAM), Niamey BP 10662, Niger
    Doctorate Research Program in Climate Change and Energy (DRP-CCE), West Africa Sciences Climate and Land-Use (WASCAL), Niamey BP 10662, Niger)

  • Rabani Adamou

    (West African Centre for Sustainable Rural Transformation (WAC-SRT), African Excellence Centre, Abdou Moumouni University (UAM), Niamey BP 10662, Niger
    Doctorate Research Program in Climate Change and Energy (DRP-CCE), West Africa Sciences Climate and Land-Use (WASCAL), Niamey BP 10662, Niger
    Department of Chemistry, Faculty of Sciences and Techniques, Abdou Moumouni University (UAM), Niamey BP 10662, Niger)

Abstract

This study evaluates the techno-economic feasibility of solar-based green hydrogen potential for off-grid and utility-scale systems in Niger. The geospatial approach is first employed to identify the area available for green hydrogen production based on environmental and socio-technical constraints. Second, we evaluate the potential of green hydrogen production using a geographic information system (GIS) tool, followed by an economic analysis of the levelized cost of hydrogen (LCOH) for alkaline and proton exchange membrane (PEM) water electrolyzers using fresh and desalinated water. The results show that the electricity generation potential is 311,617 TWh/year and 353,166 TWh/year for off-grid and utility-scale systems. The hydrogen potential using PEM (alkaline) water electrolyzers is calculated to be 5932 Mt/year and 6723 Mt/year (5694 Mt/year and 6454 Mt/year) for off-grid and utility-scale systems, respectively. The LCOH production potential decreases for PEM and alkaline water electrolyzers by 2030, ranging between 4.72–5.99 EUR/kgH 2 and 5.05–6.37 EUR/kgH 2 for off-grid and 4.09–5.21 EUR/kgH 2 and 4.22–5.4 EUR/kgH 2 for utility-scale systems.

Suggested Citation

  • Bachirou Djibo Boubé & Ramchandra Bhandari & Moussa Mounkaila Saley & Abdou Latif Bonkaney & Rabani Adamou, 2025. "Techno-Economic Analysis of Geospatial Green Hydrogen Potential Using Solar Photovoltaic in Niger: Application of PEM and Alkaline Water Electrolyzers," Energies, MDPI, vol. 18(7), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1872-:d:1629787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1872/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    2. Yushchenko, Alisa & de Bono, Andrea & Chatenoux, Bruno & Kumar Patel, Martin & Ray, Nicolas, 2018. "GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2088-2103.
    3. Edgar Ubaldo Peña Sánchez & Severin David Ryberg & Heidi Ursula Heinrichs & Detlef Stolten & Martin Robinius, 2021. "The Potential of Variable Renewable Energy Sources in Mexico: A Temporally Evaluated and Geospatially Constrained Techno-Economical Assessment," Energies, MDPI, vol. 14(18), pages 1-25, September.
    4. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    5. Aliyu, Abubakar Kabir & Modu, Babangida & Tan, Chee Wei, 2018. "A review of renewable energy development in Africa: A focus in South Africa, Egypt and Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2502-2518.
    6. Razzaqul Ahshan, 2021. "Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    7. Leonhard Povacz & Ramchandra Bhandari, 2023. "Analysis of the Levelized Cost of Renewable Hydrogen in Austria," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    8. Bhandari, Ramchandra, 2022. "Green hydrogen production potential in West Africa – Case of Niger," Renewable Energy, Elsevier, vol. 196(C), pages 800-811.
    9. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    10. Alessandro Franco & Caterina Giovannini, 2023. "Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and Perspectives," Sustainability, MDPI, vol. 15(24), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Furong & Tang, Haiping, 2024. "Sustainable photovoltaic power generation spatial planning through ecosystem service valuation: A case study of the Qinghai-Tibet plateau," Renewable Energy, Elsevier, vol. 222(C).
    2. Li, Xiao-Ya & Dong, Xin-Yu & Chen, Sha & Ye, Yan-Mei, 2024. "The promising future of developing large-scale PV solar farms in China: A three-stage framework for site selection," Renewable Energy, Elsevier, vol. 220(C).
    3. Uchendu Eugene Chigbu & Chigozie Nweke-Eze, 2023. "Green Hydrogen Production and Its Land Tenure Consequences in Africa: An Interpretive Review," Land, MDPI, vol. 12(9), pages 1-20, September.
    4. Patrick Mukumba & Shylet Y. Chivanga, 2023. "An Overview of Renewable Energy Technologies in the Eastern Cape Province in South Africa and the Rural Households’ Energy Poverty Coping Strategies," Challenges, MDPI, vol. 14(1), pages 1-12, March.
    5. Solanki, Bhanupratap Singh & Lim, Hoyoung & Yoon, Seok Jun & Ham, Hyung Chul & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2025. "Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    6. Md Sahabuddin & Md Billal Hossain & Maryam Khokhar & Mohamed Sharaf & Sarmad Ejaz & Faisal Ejaz & Csaba Bálint Illés, 2023. "The Effect of Eco-Preneurship and Green Technology Management on Greenhouse Gas Discharge: An Analysis on East Asian Economies," Sustainability, MDPI, vol. 15(8), pages 1-12, April.
    7. Mou, Xiaofeng & Zhou, Wei & Bao, Zewei & Huang, Weixing, 2024. "Effective thermal conductivity of LaNi5 powder beds for hydrogen storage: Measurement and theoretical analysis," Renewable Energy, Elsevier, vol. 231(C).
    8. Zhao, Yaling & Zhao, Bin & Yao, Yanchen & Jia, Xiaohan & Peng, Xueyuan, 2024. "Experimental study and sensitivity analysis of performance for a hydrogen diaphragm compressor," Renewable Energy, Elsevier, vol. 237(PD).
    9. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    10. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    11. Shashank Deepak Prabhu, 2025. "Understanding the Sustainable Hydrogen Generation Potential for the Region of Bavaria, Germany via Bio-Waste Processing Using Thermochemical Conversion Technology," Energies, MDPI, vol. 18(8), pages 1-24, April.
    12. Surendra Thakur & Rookmoney Thakur & Stanley Chibuzor Onwubu & Geoffrey Harris, 2022. "Examining The Factors Influencing Water Conservation Intentions Amongst Peri-Urban Communities Of Ethekwini Municipality, South Africa," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 6(2), pages 81-88, July.
    13. Zhang, Yuhu & Ren, Jing & Pu, Yanru & Wang, Peng, 2020. "Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis," Renewable Energy, Elsevier, vol. 149(C), pages 577-586.
    14. Torsten Clemens & Martin Hunyadi-Gall & Andreas Lunzer & Vladislav Arekhov & Martin Datler & Albert Gauer, 2024. "Wind–Photovoltaic–Electrolyzer-Underground Hydrogen Storage System for Cost-Effective Seasonal Energy Storage," Energies, MDPI, vol. 17(22), pages 1-26, November.
    15. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    16. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Techno-economics of offshore wind-based dynamic hydrogen production," Applied Energy, Elsevier, vol. 374(C).
    17. Dasireddy, Venkata D.B.C. & Likozar, Blaž, 2022. "Cu–Mn–O nano-particle/nano-sheet spinel-type materials as catalysts in methanol steam reforming (MSR) and preferential oxidation (PROX) reaction for purified hydrogen production," Renewable Energy, Elsevier, vol. 182(C), pages 713-724.
    18. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    19. Leonhard Povacz & Ramchandra Bhandari, 2023. "Analysis of the Levelized Cost of Renewable Hydrogen in Austria," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    20. Colelli, Leonardo & Verdone, Nicola & Bassano, Claudia & Segneri, Valentina & Vilardi, Giorgio, 2024. "Optimization of Power to Gas system with cooled reactor for CO2 methanation: Start-up and shut-down tests with Ru-based and Ni-based kinetics," Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1872-:d:1629787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.