IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5779-d634933.html
   My bibliography  Save this article

The Potential of Variable Renewable Energy Sources in Mexico: A Temporally Evaluated and Geospatially Constrained Techno-Economical Assessment

Author

Listed:
  • Edgar Ubaldo Peña Sánchez

    (Institute of Energy and Climate Research—Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Juelich GmbH, 52425 Juelich, Germany)

  • Severin David Ryberg

    (Institute of Energy and Climate Research—Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Juelich GmbH, 52425 Juelich, Germany)

  • Heidi Ursula Heinrichs

    (Institute of Energy and Climate Research—Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Juelich GmbH, 52425 Juelich, Germany)

  • Detlef Stolten

    (Institute of Energy and Climate Research—Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
    Chair for Fuel Cells, Faculty of Mechanical Engineering, RWTH Aachen University, 52072 Aachen, Germany)

  • Martin Robinius

    (Institute of Energy and Climate Research—Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Juelich GmbH, 52425 Juelich, Germany)

Abstract

Due to the increasing global importance of decarbonizing human activities, especially the production of electricity, the optimal deployment of renewable energy technologies will play a crucial role in future energy systems. To accomplish this, particular attention must be accorded to the geospatial and temporal distribution of variable renewable energy sources (VRES), such as wind and solar radiation, in order to match electricity supply and demand. This study presents a techno-economical assessment of four energy technologies in the hypothetical context of Mexico in 2050, namely: onshore and offshore wind turbines and open-field and rooftop photovoltaics. A land eligibility analysis incorporating physical, environmental, and sociopolitical eligibility constraints and individual turbine and photovoltaic park simulations, drawing on 39 years of climate data, is performed for individual sites across the country in an effort to determine the installable potential and the associated levelized costs of electricity. The results reveal that up to 54 PWh of renewable electricity can be produced at a levelized cost of electricity of less than 70 EUR·MWh −1 . Around 91% (49 PWh) of this electricity would originate from 23 TW of open-field photovoltaic parks that could occupy up to 578,000 km 2 of eligible land across the country. The remaining 9% (4.8 PWh) could be produced by 1.9 TW of onshore wind installations allocated to approximately 68,500 km 2 of eligible land that is almost fully adjacent to three mountainous zones. The combination of rooftop photovoltaic and offshore wind turbines accounts for a very small share of less than 0.03% of the overall techno-economical potential.

Suggested Citation

  • Edgar Ubaldo Peña Sánchez & Severin David Ryberg & Heidi Ursula Heinrichs & Detlef Stolten & Martin Robinius, 2021. "The Potential of Variable Renewable Energy Sources in Mexico: A Temporally Evaluated and Geospatially Constrained Techno-Economical Assessment," Energies, MDPI, vol. 14(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5779-:d:634933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5779/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5779/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaramillo, O.A & Saldaña, R & Miranda, U, 2004. "Wind power potential of Baja California Sur, México," Renewable Energy, Elsevier, vol. 29(13), pages 2087-2100.
    2. Hernández-Escobedo, Q. & Manzano-Agugliaro, F. & Zapata-Sierra, A., 2010. "The wind power of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2830-2840, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
    2. Cancino-Solórzano, Yoreley & Paredes-Sánchez, José Pablo & Gutiérrez-Trashorras, Antonio José & Xiberta-Bernat, Jorge, 2016. "The development of renewable energy resources in the State of Veracruz, Mexico," Utilities Policy, Elsevier, vol. 39(C), pages 1-4.
    3. Hernández-Escobedo, Q. & Saldaña-Flores, R. & Rodríguez-García, E.R. & Manzano-Agugliaro, F., 2014. "Wind energy resource in Northern Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 890-914.
    4. Mónica Borunda & Katya Rodríguez-Vázquez & Raul Garduno-Ramirez & Javier de la Cruz-Soto & Javier Antunez-Estrada & Oscar A. Jaramillo, 2020. "Long-Term Estimation of Wind Power by Probabilistic Forecast Using Genetic Programming," Energies, MDPI, vol. 13(8), pages 1-24, April.
    5. Quetzalcoatl Hernandez-Escobedo, 2016. "Wind Energy Assessment for Small Urban Communities in the Baja California Peninsula, Mexico," Energies, MDPI, vol. 9(10), pages 1-24, October.
    6. Cruz-Peragon, F. & Palomar, J.M. & Casanova, P.J. & Dorado, M.P. & Manzano-Agugliaro, F., 2012. "Characterization of solar flat plate collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1709-1720.
    7. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
    8. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    9. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    10. Ping Jiang & Zeng Wang & Kequan Zhang & Wendong Yang, 2017. "An Innovative Hybrid Model Based on Data Pre-Processing and Modified Optimization Algorithm and Its Application in Wind Speed Forecasting," Energies, MDPI, vol. 10(7), pages 1-29, July.
    11. Paniagua, S. & Escudero, L. & Escapa, C. & Coimbra, R.N. & Otero, M. & Calvo, L.F., 2016. "Effect of waste organic amendments on Populus sp biomass production and thermal characteristics," Renewable Energy, Elsevier, vol. 94(C), pages 166-174.
    12. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    13. Lashin, Aref & Shata, Ahmed, 2012. "An analysis of wind power potential in Port Said, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6660-6667.
    14. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    15. Zeng, Bo & Zeng, Ming & Xue, Song & Cheng, Min & Wang, Yuejin & Feng, Junjie, 2014. "Overall review of wind power development in Inner Mongolia: Status quo, barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 614-624.
    16. Cancino-Solórzano, Yoreley & Gutiérrez-Trashorras, Antonio J. & Xiberta-Bernat, Jorge, 2011. "Current state of wind energy in Mexico, achievements and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3552-3557.
    17. Morales, Luis & Lang, Francisco & Mattar, Cristian, 2012. "Mesoscale wind speed simulation using CALMET model and reanalysis information: An application to wind potential," Renewable Energy, Elsevier, vol. 48(C), pages 57-71.
    18. Cadenas, E. & Jaramillo, O.A. & Rivera, W., 2010. "Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method," Renewable Energy, Elsevier, vol. 35(5), pages 925-930.
    19. Lado-Sestayo, Rubén & De Llano-Paz, Fernando & Vivel-Búa, Milagros & Martínez-Salgueiro, Andrea, 2023. "Commodity exposure in the eurozone: How EU energy security is conditioned by the Euro," Energy, Elsevier, vol. 277(C).
    20. Fernández-García, Aránzazu & Valenzuela, Loreto & Zarza, Eduardo & Rojas, Esther & Pérez, Manuel & Hernández-Escobedo, Quetzalcoatl & Manzano-Agugliaro, Francisco, 2018. "SMALL-SIZED parabolic-trough solar collectors: Development of a test loop and evaluation of testing conditions," Energy, Elsevier, vol. 152(C), pages 401-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5779-:d:634933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.