IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v245y2025ics0960148125004501.html
   My bibliography  Save this article

Optimal design and technoeconomic analysis of on-site hydrogen refueling station powered by wind and solar photovoltaic hybrid energy systems

Author

Listed:
  • Öztürk, Reyhan Atabay
  • Devrim, Yılser

Abstract

In this study, a grid-connected on-site hydrogen filling station (HRS) integrated with renewable energy systems is designed and examined for different daily hydrogen refueling capacities. The installation location of the HRS is selected in Izmir (Turkey) and daily solar radiation and wind speed data are used in the calculations. The HRS station was integrated with a hybrid energy system using photovoltaic panels (PV), wind turbine (WT) and PV/WT and five different daily refueling scenarios were investigated. A techno-economic analysis is conducted for the designed HRS system, considering the initial investment capital, installation and operating costs. The levelized cost of hydrogen (LCOH) is evaluated according to different refueling capacity scenarios, periods of operation and renewable energy installation capacities. The lowest LCOH is obtained as 4.5 €/kg H2 in the PV-integrated HRS system for a 20-year investment scenario. The results prove the suitability of the HRS system for integrating renewable energy in the identified region. It is recommended to integrate analytical models for the system components to increase the reliability of the design and optimization process in future planned studies.

Suggested Citation

  • Öztürk, Reyhan Atabay & Devrim, Yılser, 2025. "Optimal design and technoeconomic analysis of on-site hydrogen refueling station powered by wind and solar photovoltaic hybrid energy systems," Renewable Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:renene:v:245:y:2025:i:c:s0960148125004501
    DOI: 10.1016/j.renene.2025.122788
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125004501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:245:y:2025:i:c:s0960148125004501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.