IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1661-d1621226.html
   My bibliography  Save this article

Economic Analysis of Global CO 2 Emissions and Energy Consumption Based on the World Kaya Identity

Author

Listed:
  • Alina Yakymchuk

    (Department of Management, University of Information Technologies and Management, 35-225 Rzeszów, Poland
    Department of Public Administration, Law and Humanity Sciences, Kherson State Agrarian and Economical University, 73006 Kropyvnytskiy, Ukraine)

  • Simone Maxand

    (Faculty of Business Administration and Economics, European University Viadrina, 15230 Frankfurt, Germany)

  • Anna Lewandowska

    (Department of Management, University of Information Technologies and Management, 35-225 Rzeszów, Poland)

Abstract

This research seeks to elucidate the relationship between economic activities, energy consumption, and CO 2 emissions, thereby contributing to a deeper understanding of the economic dimensions of climate change mitigation efforts within the European context, which may be useful for developing policies to mitigate CO 2 emissions and promote sustainable development. This study investigates world CO 2 emissions and their relation to population growth and finds a strong positive relation based on data from 1969 to 2023. The World Kaya Identity has been applied to understand how changes in the involved factors affect CO 2 emissions over time. When studying the more complex relation between the variables by controlling for energy use, GDP, and carbon intensity based on the Kaya Identity, the authors identified an overall long-term coupling of all factors. Considering short-term variations, population growth appears to have an insignificant effect, and carbon intensity appears most influential on CO 2 emissions. As a next step, we take a disaggregated view on different country settings, economic sectors, and energy sources to further analyze the role carbon intensity plays for increased CO 2 emissions. Here, we lay a special focus on the European perspective. This descriptive analysis lets us draw some general conclusions regarding strategies for reducing the negative impact of CO 2 emissions and political efforts for sustainability transformations. This study is important for the current state of science, since a clear economic assessment of the negative effects of carbon dioxide is necessary for planning measures and costs in the ecological sphere, the correct assessment of the impact on the health of the population, the prospective implementation of preventive measures at all levels, and financing measures to reduce the negative effects of carbon dioxide. The authors found a significant positive effect of GDPpc, energy intensity, and carbon intensity on impact and an insignificant effect on the population. Thus, an unexpected increase in the population likely does not have short-term effects on CO 2 emissions, and the responses to GDPpc and energy intensity both decrease after some periods, while the shock in carbon intensity shows a significant effect even after 10 years. This is reasonable in the sense that both increases in GDP and energy intensity might be alleviated by technological progress and, thus, only show a short-term positive effect on CO 2 emissions. The carbon intensity of energy consumption is more crucial for the long-term change of CO 2 emissions. For this reason, we study the decomposition of energy use in more detail by considering descriptive statistics over time and over different sectors and countries.

Suggested Citation

  • Alina Yakymchuk & Simone Maxand & Anna Lewandowska, 2025. "Economic Analysis of Global CO 2 Emissions and Energy Consumption Based on the World Kaya Identity," Energies, MDPI, vol. 18(7), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1661-:d:1621226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1661/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1661/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Qingyun & Han, Fei & Huang, Yuhong & She, Xiaohui & You, Zhanping & Zhang, Biao, 2024. "Research of the carbon footprint calculation and evaluation method based on the pattern microalgae for biodiesel production," Renewable Energy, Elsevier, vol. 231(C).
    2. Jiang, Yunpeng & Ren, Zhouyang & Lu, Chunhao & Li, Hui & Yang, Zhixue, 2024. "A region-based low-carbon operation analysis method for integrated electricity-hydrogen-gas systems," Applied Energy, Elsevier, vol. 355(C).
    3. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    4. Oscar A. Bustos-Brinez & Javier Rosero Garcia, 2025. "Clustering Analysis for Active and Reactive Energy Consumption Data Based on AMI Measurements," Energies, MDPI, vol. 18(1), pages 1-22, January.
    5. Hoang, Kiet Tuan & Thilker, Christian Ankerstjerne & Knudsen, Brage Rugstad & Imsland, Lars Struen, 2024. "A hierarchical framework for minimising emissions in hybrid gas-renewable energy systems under forecast uncertainty," Applied Energy, Elsevier, vol. 373(C).
    6. Feng Dong & Jingyun Li & Zhicheng Li & Yuhuan Chen & Lu Zheng & Bin Lu & Yajie Liu, 2024. "Exploring synergistic decoupling of haze pollution and carbon emissions in emerging economies: fresh evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17281-17318, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alina Yakymchuk & Małgorzata Agnieszka Rataj, 2025. "Economic Analysis of Fossil CO 2 Emissions: A European Perspective on Sustainable Development," Energies, MDPI, vol. 18(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alina Yakymchuk & Małgorzata Agnieszka Rataj, 2025. "Economic Analysis of Fossil CO 2 Emissions: A European Perspective on Sustainable Development," Energies, MDPI, vol. 18(8), pages 1-20, April.
    2. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Fabio Antoniou & Roland Strausz, 2014. "The Effectiveness of Taxation and Feed-in Tariffs," CESifo Working Paper Series 4788, CESifo.
    4. Li, Aijun & Du, Nan & Wei, Qian, 2014. "The cross-country implications of alternative climate policies," Energy Policy, Elsevier, vol. 72(C), pages 155-163.
    5. Arkadiusz Małek & Andrzej Marciniak, 2025. "Operational Analysis of Power Generation from a Photovoltaic–Wind Mix and Low-Emission Hydrogen Production," Energies, MDPI, vol. 18(10), pages 1-25, May.
    6. Lawrence H. Goulder, 2013. "Markets for Pollution Allowances: What Are the (New) Lessons?," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 87-102, Winter.
    7. Francesco Nicolli & Francesco Vona & Lionel Nesta, 2012. "Determinants of Renewable Energy Innovation: Environmental Policies vs. Market Regulation," Working Papers 201204, University of Ferrara, Department of Economics.
    8. Jonathan M. Lee, 2015. "The Impact of Heterogeneous NOx Regulations on Distributed Electricity Generation in U.S. Manufacturing," Working Papers 15-12, Center for Economic Studies, U.S. Census Bureau.
    9. Johannes Urpelainen, 2012. "How do electoral competition and special interests shape the stringency of renewable energy standards?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(1), pages 23-34, January.
    10. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    11. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    12. Nicolli, Francesco & Vona, Francesco, 2012. "The Evolution of Renewable Energy Policy in OECD Countries: Aggregate Indicators and Determinants," Climate Change and Sustainable Development 130897, Fondazione Eni Enrico Mattei (FEEM).
    13. Ghisetti, Claudia, 2017. "Demand-pull and environmental innovations: Estimating the effects of innovative public procurement," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 178-187.
    14. Pizer, William A. & Burtraw, Dallas & Harrington, Winston & Newell, Richard G. & Sanchirico, James N., 2005. "Modeling Economywide versus Sectoral Climate Policies Using Combined Aggregate-Sectoral Models," Discussion Papers 10502, Resources for the Future.
    15. Mayeres, Inge & Proost, Stef & Delhaye, Eef & Novelli, Philippe & Conijn, Sjaak & Gómez-Jiménez, Inmaculada & Rivas-Brousse, Daniel, 2023. "Climate ambitions for European aviation: Where can sustainable aviation fuels bring us?," Energy Policy, Elsevier, vol. 175(C).
    16. Thomas Eichner & Rüdiger Pethig, 2015. "Efficient Management of Insecure Fossil Fuel Imports through Taxing Domestic Green Energy?," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 17(5), pages 724-751, October.
    17. Delarue, Erik & Van den Bergh, Kenneth, 2016. "Carbon mitigation in the electric power sector under cap-and-trade and renewables policies," Energy Policy, Elsevier, vol. 92(C), pages 34-44.
    18. Fremstad, Anders & Paul, Mark, 2022. "Neoliberalism and climate change: How the free-market myth has prevented climate action," Ecological Economics, Elsevier, vol. 197(C).
    19. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
    20. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1661-:d:1621226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.