IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3382-d1066424.html
   My bibliography  Save this article

Can Industry Counteract the Ecological Crisis? An Approach for the Development of a New Circular Bioeconomic Model Based on Biocomposite Materials

Author

Listed:
  • Eliana Fernández Fortunato

    (INGENIO (CSIC-UPV), Engineering Projects Department, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Fernando Jiménez-Sáez

    (INGENIO (CSIC-UPV), Engineering Projects Department, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Eloy Hontoria

    (Business Economics Department, Technical University of Cartagena, 30203 Cartagena, Spain)

Abstract

The ecological crisis we are facing, in addition to depleting non-renewable raw materials, has driven the emergence of biocomposite (BC) materials as a sustainable alternative that can create new opportunities for industrial product design and development. The use of biological resources in economic processes, as the bioeconomic (BE) model proposes, can lead to a transformation from the traditional linear extractive production logic to a new productive paradigm. This paper analyses technical and scientific information on the valorisation of agri-food waste to which innovative and efficient techniques and technologies have been applied, resulting in natural resource use in new products. Our review aims to explore and assess the production, development and industrial exploitation of renewable biological resources as a way to bridge the transition from the linear economic model to a circular bioeconomy (CBE) paradigm shift. For a detailed exploration and assessment of the research problem, this paper presents a comparative study between two paradigmatic projects organised and financed by different R&D programmes of the European Union (EU). We identify the agents and strategies of a potential BC innovation system, and we propose a conceptual model for the creation of an innovative and alternative industrial-scale productive value chain to replace petrochemical-based composite materials with BC and establish a new paradigm of production and consumption.

Suggested Citation

  • Eliana Fernández Fortunato & Fernando Jiménez-Sáez & Eloy Hontoria, 2023. "Can Industry Counteract the Ecological Crisis? An Approach for the Development of a New Circular Bioeconomic Model Based on Biocomposite Materials," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3382-:d:1066424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    2. Hammad Ahmad & Gyan Chhipi-Shrestha & Kasun Hewage & Rehan Sadiq, 2022. "A Comprehensive Review on Construction Applications and Life Cycle Sustainability of Natural Fiber Biocomposites," Sustainability, MDPI, vol. 14(23), pages 1-34, November.
    3. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    4. Henk Diepenmaat & René Kemp & Myrthe Velter, 2020. "Why Sustainable Development Requires Societal Innovation and Cannot Be Achieved without This," Sustainability, MDPI, vol. 12(3), pages 1-26, February.
    5. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    6. Kirchherr, Julian & Reike, Denise & Hekkert, Marko, 2017. "Conceptualizing the circular economy: An analysis of 114 definitions," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 221-232.
    7. Yaashikaa, P.R. & Kumar, P. Senthil, 2022. "Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review," MPRA Paper 112234, University Library of Munich, Germany.
    8. Edquist , Charles, 2015. "Innovation-related Public Procurement as a Demand-oriented Innovation Policy Instrument," Papers in Innovation Studies 2015/28, Lund University, CIRCLE - Centre for Innovation Research.
    9. Maximilian Kardung & Kutay Cingiz & Ortwin Costenoble & Roel Delahaye & Wim Heijman & Marko Lovrić & Myrna van Leeuwen & Robert M’Barek & Hans van Meijl & Stephan Piotrowski & Tévécia Ronzon & Johanne, 2021. "Development of the Circular Bioeconomy: Drivers and Indicators," Sustainability, MDPI, vol. 13(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    2. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    3. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    4. Valeria Costantini & Francesco Crespi, 2013. "Public policies for a sustainable energy sector: regulation, diversity and fostering of innovation," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 401-429, April.
    5. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    6. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    7. Nill, Jan & Kemp, Ren, 2009. "Evolutionary approaches for sustainable innovation policies: From niche to paradigm?," Research Policy, Elsevier, vol. 38(4), pages 668-680, May.
    8. Antoine Fontaine & Laurence Rocher, 2024. "Cities looking for waste heat: The dilemmas of energy and industry nexuses in French metropolitan areas," Urban Studies, Urban Studies Journal Limited, vol. 61(2), pages 254-272, February.
    9. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    10. Salm, Sarah & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2016. "What are retail investors' risk-return preferences towards renewable energy projects? A choice experiment in Germany," Energy Policy, Elsevier, vol. 97(C), pages 310-320.
    11. Floater, Graham & Rode, Philipp & Robert, Alexis & Kennedy, Chris & Hoornweg, Dan & Slavcheva, Roxana & Godfrey, Nick, 2014. "Cities and the New Climate Economy: the transformative role of global urban growth," LSE Research Online Documents on Economics 60775, London School of Economics and Political Science, LSE Library.
    12. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Sen, Suphi & von Schickfus, Marie-Theres, 2020. "Climate policy, stranded assets, and investors’ expectations," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    14. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    15. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    16. Bandyopadhyay, Gopal & Bagheri, Fathollah & Mann, Michael, 2007. "Reduction of fossil fuel emissions in the USA: A holistic approach towards policy formulation," Energy Policy, Elsevier, vol. 35(2), pages 950-965, February.
    17. Abdul-Manan, Amir F.N. & Baharuddin, Azizan & Chang, Lee Wei, 2014. "A detailed survey of the palm and biodiesel industry landscape in Malaysia," Energy, Elsevier, vol. 76(C), pages 931-941.
    18. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    19. Gönenç Yücel & Catherine Miluska Chiong Meza, 2008. "Studying transition dynamics via focusing on underlying feedback interactions," Computational and Mathematical Organization Theory, Springer, vol. 14(4), pages 320-349, December.
    20. Pablo Del Río, 2010. "Climate Change Policies and New Technologies," Chapters, in: Emilio Cerdá Tena & Xavier Labandeira (ed.), Climate Change Policies, chapter 5, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3382-:d:1066424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.