IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10291-d1182594.html
   My bibliography  Save this article

Optimal Resource Allocation for Carbon Mitigation

Author

Listed:
  • Sara Cerasoli

    (Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA)

  • Amilcare Porporato

    (Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
    High Meadows Environmental Institute, Princeton, NJ 08544, USA)

Abstract

Climate change threatens economic and environmental stability and requires immediate action to prevent and counteract its impacts. As large investments are already going into mitigation efforts, it is crucial to know how to best allocate them in time and among the alternatives. In this work, we tackle this problem using optimal control methods to obtain the temporal profiles of investments and their allocation to either clean energy development or carbon removal technologies expansion. The optimal allocation aims to minimize both the abatement and damage costs for various scenarios and mitigation policies, considering the optimization time horizon. The results show that early investments and a larger share of demand satisfied by clean energy should be priorities for any economically successful mitigation plan. Moreover, less stringent constraints on abatement budgets and reduced discounting of future utility are needed for a more economically and environmentally sustainable mitigation pathway.

Suggested Citation

  • Sara Cerasoli & Amilcare Porporato, 2023. "Optimal Resource Allocation for Carbon Mitigation," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10291-:d:1182594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bersalli, Germán & Menanteau, Philippe & El-Methni, Jonathan, 2020. "Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Waldhoff, Stephanie & Anthoff, David & Rose, Steven K. & Tol, Richard S. J., 2014. "The marginal damage costs of different greenhouse gases: An application of FUND," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 8, pages 1-33.
    3. Cousse, Julia, 2021. "Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. David A. Stainforth, 2021. "‘Polluter pays’ policy could speed up emission reductions and removal of atmospheric CO2," Nature, Nature, vol. 596(7872), pages 346-347, August.
    5. Delavane Diaz & Frances Moore, 2017. "Quantifying the economic risks of climate change," Nature Climate Change, Nature, vol. 7(11), pages 774-782, November.
    6. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    7. Artzrouni, Marc, 2009. "The mathematics of Ponzi schemes," Mathematical Social Sciences, Elsevier, vol. 58(2), pages 190-201, September.
    8. Russell W. Cooper & John C. Haltiwanger, 2006. "On the Nature of Capital Adjustment Costs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(3), pages 611-633.
    9. A. Haurie & N. M. Hung, 1977. "Turnpike Properties for the Optimal Use of a Natural Resource," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 44(2), pages 329-336.
    10. Lucas Bretschger & Christos Karydas, 2018. "Optimum Growth and Carbon Policies with Lags in the Climate System," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(4), pages 781-806, August.
    11. Marco Segreto & Lucas Principe & Alexandra Desormeaux & Marco Torre & Laura Tomassetti & Patrizio Tratzi & Valerio Paolini & Francesco Petracchini, 2020. "Trends in Social Acceptance of Renewable Energy Across Europe—A Literature Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    12. Pianta, Silvia & Rinscheid, Adrian & Weber, Elke U., 2021. "Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy," Energy Policy, Elsevier, vol. 151(C).
    13. Celine Bout & Jay Sterling Gregg & James Haselip & Geraint Ellis, 2021. "How Is Social Acceptance Reflected in National Renewable Energy Plans? Evidence from Three Wind-Rich Countries," Energies, MDPI, vol. 14(13), pages 1-19, July.
    14. Elke Moser & Dieter Grass & Gernot Tragler, 2016. "A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 545-575, July.
    15. Rasmussen, Tobias N., 2001. "CO2 abatement policy with learning-by-doing in renewable energy," Resource and Energy Economics, Elsevier, vol. 23(4), pages 297-325, October.
    16. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    17. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    18. Katsumasa Tanaka & Brian C. O’Neill, 2018. "The Paris Agreement zero-emissions goal is not always consistent with the 1.5 °C and 2 °C temperature targets," Nature Climate Change, Nature, vol. 8(4), pages 319-324, April.
    19. Aleh Cherp & Vadim Vinichenko & Jale Tosun & Joel A. Gordon & Jessica Jewell, 2021. "National growth dynamics of wind and solar power compared to the growth required for global climate targets," Nature Energy, Nature, vol. 6(7), pages 742-754, July.
    20. Lewis C. King & Jeroen C. J. M. van den Bergh, 2018. "Implications of net energy-return-on-investment for a low-carbon energy transition," Nature Energy, Nature, vol. 3(4), pages 334-340, April.
    21. Bhattacharya, Utpal, 2003. "The optimal design of Ponzi schemes in finite economies," Journal of Financial Intermediation, Elsevier, vol. 12(1), pages 2-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsin Dhali & Shafiqul Hassan & Umashankar Subramaniam, 2023. "Comparative Analysis of Oil and Gas Legal Frameworks in Bangladesh and Nigeria: A Pathway towards Achieving Sustainable Energy through Policy," Sustainability, MDPI, vol. 15(21), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mário Cunha & Hélder Valente & Paulo B. Vasconcelos, 2013. "Ponzi schemes: computer simulation," OBEGEF Working Papers 023, OBEGEF - Observatório de Economia e Gestão de Fraude;OBEGEF Working Papers on Fraud and Corruption.
    2. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    3. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    4. Winkelmann, Ricarda & Donges, Jonathan F. & Smith, E. Keith & Milkoreit, Manjana & Eder, Christina & Heitzig, Jobst & Katsanidou, Alexia & Wiedermann, Marc & Wunderling, Nico & Lenton, Timothy M., 2022. "Social tipping processes towards climate action: A conceptual framework," Ecological Economics, Elsevier, vol. 192(C).
    5. Rebecca Newman & Ilan Noy, 2023. "The global costs of extreme weather that are attributable to climate change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    7. Keiner, Dominik & Gulagi, Ashish & Breyer, Christian, 2023. "Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses," Energy, Elsevier, vol. 272(C).
    8. da Silva Neves, Marcus Vinicius & Szklo, Alexandre & Schaeffer, Roberto, 2023. "Fossil fuel facilities exergy return for a frontier of analysis incorporating CO2 capture: The case of a coal power plant," Energy, Elsevier, vol. 284(C).
    9. Hofstetter, Marc & Mejía, Daniel & Rosas, José Nicolás & Urrutia, Miguel, 2018. "Ponzi schemes and the financial sector: DMG and DRFE in Colombia," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 18-33.
    10. Diesendorf, M. & Wiedmann, T., 2020. "Implications of Trends in Energy Return on Energy Invested (EROI) for Transitioning to Renewable Electricity," Ecological Economics, Elsevier, vol. 176(C).
    11. Sylvain Catherine & Thomas Chaney & Zongbo Huang & David Sraer & David Thesmar, 2022. "Quantifying Reduced‐Form Evidence on Collateral Constraints," Journal of Finance, American Finance Association, vol. 77(4), pages 2143-2181, August.
    12. Senni, Chiara Colesanti & von Jagow, Adrian, 2023. "Water risks for hydroelectricity generation," LSE Research Online Documents on Economics 119256, London School of Economics and Political Science, LSE Library.
    13. Mac Clay, Pablo & Börner, Jan & Sellare, Jorge, 2023. "Institutional and macroeconomic stability mediate the effect of auctions on renewable energy capacity," Energy Policy, Elsevier, vol. 180(C).
    14. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    15. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    16. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    17. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    18. Simone Blanc & Stefano Massaglia & Filippo Brun & Cristiana Peano & Angela Mosso & Nicole Roberta Giuggioli, 2019. "Use of Bio-Based Plastics in the Fruit Supply Chain: An Integrated Approach to Assess Environmental, Economic, and Social Sustainability," Sustainability, MDPI, vol. 11(9), pages 1-18, April.
    19. Robert E. Hall, 2002. "Industry Dynamics with Adjustment Costs," NBER Working Papers 8849, National Bureau of Economic Research, Inc.
    20. Joel M. David & Venky Venkateswaran, 2019. "The Sources of Capital Misallocation," American Economic Review, American Economic Association, vol. 109(7), pages 2531-2567, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10291-:d:1182594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.