IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61492-9.html
   My bibliography  Save this article

Strategic deployment of solar photovoltaics for achieving self-sufficiency in Europe throughout the energy transition

Author

Listed:
  • Parisa Rahdan

    (Aarhus University
    Technical University of Denmark)

  • Elisabeth Zeyen

    (Technische Universität Berlin)

  • Marta Victoria

    (Aarhus University
    Technical University of Denmark
    Novo Nordisk Foundation CO2 Research Center)

Abstract

Transition pathways for Europe to achieve carbon neutrality emphasize the need for a massive deployment of solar and wind energy. Global cost optimization would lead to installing most of the renewable capacity in a few resource-rich countries, but policy decisions could prioritize other factors. We investigate the effect of energy independence on Europe’s energy system design. We show that self-sufficiency constraints lead to a more equitable distribution of costs and installed capacities across Europe. However, countries that typically depend on energy imports face cost increases of up to 150% to ensure that they cover their demand on an annual basis. Self-sufficiency particularly favors solar photovoltaic energy, and with declining PV module prices, alternative configurations like inverter dimensioning and horizontal tracking are beneficial enough to be part of the optimal solution for many countries. Moreover, we find that very high solar and wind annual installation rates are required, but they seem feasible considering recent historical trends.

Suggested Citation

  • Parisa Rahdan & Elisabeth Zeyen & Marta Victoria, 2025. "Strategic deployment of solar photovoltaics for achieving self-sufficiency in Europe throughout the energy transition," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61492-9
    DOI: 10.1038/s41467-025-61492-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61492-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61492-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Marco Segreto & Lucas Principe & Alexandra Desormeaux & Marco Torre & Laura Tomassetti & Patrizio Tratzi & Valerio Paolini & Francesco Petracchini, 2020. "Trends in Social Acceptance of Renewable Energy Across Europe—A Literature Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    3. Zappa, William & van den Broek, Machteld, 2018. "Analysing the potential of integrating wind and solar power in Europe using spatial optimisation under various scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1192-1216.
    4. Elisabeth Zeyen & Marta Victoria & Tom Brown, 2023. "Endogenous learning for green hydrogen in a sector-coupled energy model for Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Marta Victoria & Kun Zhu & Tom Brown & Gorm B. Andresen & Martin Greiner, 2020. "Early decarbonisation of the European energy system pays off," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Franziska Flachsbarth & Marion Wingenbach & Matthias Koch, 2021. "Addressing the Effect of Social Acceptance on the Distribution of Wind Energy Plants and the Transmission Grid in Germany," Energies, MDPI, vol. 14(16), pages 1-18, August.
    7. Julia Kirch Kirkegaard & David Philipp Rudolph & Sophie Nyborg & Helena Solman & Elizabeth Gill & Tom Cronin & Mary Hallisey, 2023. "Tackling grand challenges in wind energy through a socio-technical perspective," Nature Energy, Nature, vol. 8(7), pages 655-664, July.
    8. Grochowicz, Aleksander & van Greevenbroek, Koen & Benth, Fred Espen & Zeyringer, Marianne, 2023. "Intersecting near-optimal spaces: European power systems with more resilience to weather variability," Energy Economics, Elsevier, vol. 118(C).
    9. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    10. Chattopadhyay, Kabitri & Kies, Alexander & Lorenz, Elke & von Bremen, Lüder & Heinemann, Detlev, 2017. "The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system," Renewable Energy, Elsevier, vol. 113(C), pages 176-189.
    11. Hansen, J.P. & Narbel, P.A. & Aksnes, D.L., 2017. "Limits to growth in the renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 769-774.
    12. Tomasz Rokicki & Piotr Bórawski & András Szeberényi, 2023. "The Impact of the 2020–2022 Crises on EU Countries’ Independence from Energy Imports, Particularly from Russia," Energies, MDPI, vol. 16(18), pages 1-26, September.
    13. Richard S. J. Tol, 2023. "Social cost of carbon estimates have increased over time," Nature Climate Change, Nature, vol. 13(6), pages 532-536, June.
    14. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2019. "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, Elsevier, vol. 254(C).
    15. Kevin Rennert & Frank Errickson & Brian C. Prest & Lisa Rennels & Richard G. Newell & William Pizer & Cora Kingdon & Jordan Wingenroth & Roger Cooke & Bryan Parthum & David Smith & Kevin Cromar & Dela, 2022. "Comprehensive evidence implies a higher social cost of CO2," Nature, Nature, vol. 610(7933), pages 687-692, October.
    16. Aleh Cherp & Vadim Vinichenko & Jale Tosun & Joel A. Gordon & Jessica Jewell, 2021. "National growth dynamics of wind and solar power compared to the growth required for global climate targets," Nature Energy, Nature, vol. 6(7), pages 742-754, July.
    17. Riyad Mubarak & Eduardo Weide Luiz & Gunther Seckmeyer, 2019. "Why PV Modules Should Preferably No Longer Be Oriented to the South in the Near Future," Energies, MDPI, vol. 12(23), pages 1-16, November.
    18. Pedersen, Tim T. & Victoria, Marta & Rasmussen, Morten G. & Andresen, Gorm B., 2021. "Modeling all alternative solutions for highly renewable energy systems," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walch, Alina & Rüdisüli, Martin, 2023. "Strategic PV expansion and its impact on regional electricity self-sufficiency: Case study of Switzerland," Applied Energy, Elsevier, vol. 346(C).
    2. Satymov, Rasul & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Global-local analysis of cost-optimal onshore wind turbine configurations considering wind classes and hub heights," Energy, Elsevier, vol. 256(C).
    3. Tol, Richard S.J., 2024. "A meta-analysis of the total economic impact of climate change," Energy Policy, Elsevier, vol. 185(C).
    4. Castellini, Marta & Castelli, Chiara & Gusperti, Camilla & Lupi, Veronica & Vergalli, Sergio, 2025. "Balancing climate policies and economic development in the Mediterranean countries," Energy Economics, Elsevier, vol. 145(C).
    5. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst, 2019. "Geographical optimization of variable renewable energy capacity in China using modern portfolio theory," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    7. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    8. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).
    9. Goforth, Teagan & Levin, Todd & Nock, Destenie, 2025. "Incorporating energy justice and equity objectives in power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    10. Lamorlette, A., 2023. "A coupled model of global energy production and ERoEI applied to photovoltaic and wind, an estimation of net production," Energy, Elsevier, vol. 278(PB).
    11. Dupré la Tour, Marie-Alix, 2023. "Photovoltaic and wind energy potential in Europe – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    12. Gaure, Simen & Golombek, Rolf, 2022. "True or not true: CO2 free electricity generation is possible," Energy, Elsevier, vol. 259(C).
    13. Gulagi, Ashish & Keiner, Dominik & Canessa, Rafaella & Satymov, Rasul & ElSayed, Mai & Peer, Rebecca & Haas, Jannik & Breyer, Christian, 2025. "Analysing techno-economic impacts of integrating wave power to achieve carbon neutrality and electricity based fuel exports: A case for New Zealand," Energy, Elsevier, vol. 319(C).
    14. Lopez, Gabriel & Satymov, Rasul & Aghahosseini, Arman & Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2024. "Ocean energy enabling a sustainable energy-industry transition for Hawaiʻi," Renewable Energy, Elsevier, vol. 237(PC).
    15. Majidi, Hassan & Hayati, Mohammad Mohsen & Breyer, Christian & Mohammadi-ivatloo, Behnam & Honkapuro, Samuli & Karjunen, Hannu & Laaksonen, Petteri & Sihvonen, Ville, 2025. "Overview of energy modeling requirements and tools for future smart energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    16. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    17. Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2023. "Assessing the national synergy potential of onshore and offshore renewable energy from the perspective of resources dynamic and complementarity," Energy, Elsevier, vol. 279(C).
    18. Sánchez-García, Luis & Averfalk, Helge & Hermoso-Martínez, Nekane & Hernández-Iñarra, Patxi & Möllerström, Erik & Persson, Urban, 2025. "Feasibility of district heating in a mild climate: A comparison of warm and cold temperature networks in Bilbao," Applied Energy, Elsevier, vol. 378(PA).
    19. Stanley Risch & Rachel Maier & Junsong Du & Noah Pflugradt & Peter Stenzel & Leander Kotzur & Detlef Stolten, 2022. "Potentials of Renewable Energy Sources in Germany and the Influence of Land Use Datasets," Energies, MDPI, vol. 15(15), pages 1-25, July.
    20. M. Millinger & F. Hedenus & E. Zeyen & F. Neumann & L. Reichenberg & G. Berndes, 2025. "Diversity of biomass usage pathways to achieve emissions targets in the European energy system," Nature Energy, Nature, vol. 10(2), pages 226-242, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61492-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.