IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015328.html
   My bibliography  Save this article

Global-local analysis of cost-optimal onshore wind turbine configurations considering wind classes and hub heights

Author

Listed:
  • Satymov, Rasul
  • Bogdanov, Dmitrii
  • Breyer, Christian

Abstract

This study aims to contribute to the field of energy systems modelling with high-resolution cost-optimised onshore wind turbine configurations and an openly available hourly data of wind electricity yield on a global-local scale. It introduces a more rigorous and novel methodology to estimate the wind electricity yield for lowest cost electricity generation by considering different wind classes and hub height related capital expenditures along with limitations induced by extreme wind gusts. Based on up-to-date financial and technical assumptions, including the latest power curves for ENERCON wind turbines, the results of this study show that there exists a certain hub height that enables wind turbines to deliver the lowest cost electricity and growing beyond that height does not pay-off the rise in capital expenditures needed for stronger foundations and taller and sturdier towers. Class III turbines provide higher full load hours and more stable hourly generation profiles, but in some areas higher cost does not pay-off or wind gusts become a limiting factor. The application of this novel multi-turbine multi-hub height high resolution optimisation results to energy system modelling would significantly increase the quality of modelling by improved estimation of the wind generation cost at different locations.

Suggested Citation

  • Satymov, Rasul & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Global-local analysis of cost-optimal onshore wind turbine configurations considering wind classes and hub heights," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015328
    DOI: 10.1016/j.energy.2022.124629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    3. Marta Victoria & Kun Zhu & Tom Brown & Gorm B. Andresen & Martin Greiner, 2020. "Early decarbonisation of the European energy system pays off," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    5. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
    6. Hoogwijk, Monique & de Vries, Bert & Turkenburg, Wim, 2004. "Assessment of the global and regional geographical, technical and economic potential of onshore wind energy," Energy Economics, Elsevier, vol. 26(5), pages 889-919, September.
    7. Florian Egli & Bjarne Steffen & Tobias S. Schmidt, 2019. "Bias in energy system models with uniform cost of capital assumption," Nature Communications, Nature, vol. 10(1), pages 1-3, December.
    8. Boie, Inga & Kost, Christoph & Bohn, Sven & Agsten, Michael & Bretschneider, Peter & Snigovyi, Oleksandr & Pudlik, Martin & Ragwitz, Mario & Schlegl, Thomas & Westermann, Dirk, 2016. "Opportunities and challenges of high renewable energy deployment and electricity exchange for North Africa and Europe – Scenarios for power sector and transmission infrastructure in 2030 and 2050," Renewable Energy, Elsevier, vol. 87(P1), pages 130-144.
    9. Andresen, Gorm B. & Søndergaard, Anders A. & Greiner, Martin, 2015. "Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis," Energy, Elsevier, vol. 93(P1), pages 1074-1088.
    10. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2017. "Temporally-explicit and spatially-resolved global onshore wind energy potentials," Energy, Elsevier, vol. 131(C), pages 207-217.
    11. Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
    12. Christian Breyer, Dmitrii Bogdanov, Arman Aghahosseini, Ashish Gulagi, and Mahdi Fasihi, 2020. "On the Techno-economic Benefits of a Global Energy Interconnection," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1), pages 83-102.
    13. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    14. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    15. Welder, Lara & Ryberg, D.Severin & Kotzur, Leander & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2018. "Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany," Energy, Elsevier, vol. 158(C), pages 1130-1149.
    16. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).
    17. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    18. Eurek, Kelly & Sullivan, Patrick & Gleason, Michael & Hettinger, Dylan & Heimiller, Donna & Lopez, Anthony, 2017. "An improved global wind resource estimate for integrated assessment models," Energy Economics, Elsevier, vol. 64(C), pages 552-567.
    19. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    20. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katla, Daria & Węcel, Daniel & Jurczyk, Michał & Skorek-Osikowska, Anna, 2023. "Preliminary experimental study of a methanation reactor for conversion of H2 and CO2 into synthetic natural gas (SNG)," Energy, Elsevier, vol. 263(PD).
    2. Yan, Bowen & Shen, Ruifang & Li, Ke & Wang, Zhenguo & Yang, Qingshan & Zhou, Xuhong & Zhang, Le, 2023. "Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations," Energy, Elsevier, vol. 284(C).
    3. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    4. Chengming Zuo & Juchuan Dai & Guo Li & Mimi Li & Fan Zhang, 2023. "Investigation of Data Pre-Processing Algorithms for Power Curve Modeling of Wind Turbines Based on ECC," Energies, MDPI, vol. 16(6), pages 1-24, March.
    5. Ravi Kumar Pandit & Davide Astolfi & Isidro Durazo Cardenas, 2023. "A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines," Energies, MDPI, vol. 16(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Gawlick, Julia & Hamacher, Thomas, 2023. "Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050," Energy Policy, Elsevier, vol. 180(C).
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. ElSayed, Mai & Aghahosseini, Arman & Breyer, Christian, 2023. "High cost of slow energy transitions for emerging countries: On the case of Egypt's pathway options," Renewable Energy, Elsevier, vol. 210(C), pages 107-126.
    6. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    7. Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2023. "Hierarchical approach to energy system modelling: Complexity reduction with minor changes in results," Energy, Elsevier, vol. 273(C).
    8. Galván, Antonio & Haas, Jannik & Moreno-Leiva, Simón & Osorio-Aravena, Juan Carlos & Nowak, Wolfgang & Palma-Benke, Rodrigo & Breyer, Christian, 2022. "Exporting sunshine: Planning South America’s electricity transition with green hydrogen," Applied Energy, Elsevier, vol. 325(C).
    9. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    10. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    11. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    12. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    13. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    14. Gabrielli, Paolo & Poluzzi, Alessandro & Kramer, Gert Jan & Spiers, Christopher & Mazzotti, Marco & Gazzani, Matteo, 2020. "Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    15. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    16. Gaure, Simen & Golombek, Rolf, 2022. "True or not true: CO2 free electricity generation is possible," Energy, Elsevier, vol. 259(C).
    17. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    18. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Do, Thang Nam, 2021. "Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage," Energy, Elsevier, vol. 236(C).
    19. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    20. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.