IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5260-d803152.html
   My bibliography  Save this article

Estimating Long-Run Relationship between Renewable Energy Use and CO 2 Emissions: A Radial Basis Function Neural Network (RBFNN) Approach

Author

Listed:
  • Pradyot Ranjan Jena

    (School of Management, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India)

  • Babita Majhi

    (Department of CSIT, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur 495009, India)

  • Ritanjali Majhi

    (School of Management, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India)

Abstract

The long-run relationship between economic growth and environmental quality has been estimated within the framework of the environmental Kuznets Curve (EKC). Several studies have estimated this relationship by using statistical models such as panel regression and time series regression. The current study argues that there is a nonlinear relationship between environmental quality indicators and economic and non-economic predictors and hence an appropriate nonlinear model is required to predict it. An adaptive and nonlinear model, namely radial basis function neural network (RBFNN) has been developed in this study. CO 2 emission is used as the target output and renewable energy consumption share, real GDP, trade openness, urban population ratio, and democracy index are used as the predictors to estimate the EKC relationship for nineteen major CO 2 emitting countries that account for 78% of the global emissions. The model developed in this study could predict the CO 2 emissions of all the countries with more than 95% accuracy. This finding underlines the usefulness of the RBFNN model which can be used to predict emission levels of other pollution indicators at the global level. Further, comparing two models, one with all the predictors and the other excluding the renewable energy share, it was found that the model with renewable energy share predicts CO 2 emissions more accurately. This reinforces the already strengthening campaign to encourage industries and governments to increase the share of renewable energy in total energy use.

Suggested Citation

  • Pradyot Ranjan Jena & Babita Majhi & Ritanjali Majhi, 2022. "Estimating Long-Run Relationship between Renewable Energy Use and CO 2 Emissions: A Radial Basis Function Neural Network (RBFNN) Approach," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5260-:d:803152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yulong & Wang, Zheng & Zhong, Zhangqi, 2019. "CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China," Renewable Energy, Elsevier, vol. 131(C), pages 208-216.
    2. Shahbaz, Muhammad & Khan, Saleheen & Tahir, Mohammad Iqbal, 2013. "The dynamic links between energy consumption, economic growth, financial development and trade in China: Fresh evidence from multivariate framework analysis," Energy Economics, Elsevier, vol. 40(C), pages 8-21.
    3. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    4. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    5. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, Oxford University Press, vol. 110(2), pages 353-377.
    6. Scruggs, Lyle A., 1998. "Political and economic inequality and the environment," Ecological Economics, Elsevier, vol. 26(3), pages 259-275, September.
    7. Yong Geng & Joseph Sarkis & Raimund Bleischwitz, 2019. "How to globalize the circular economy," Nature, Nature, vol. 565(7738), pages 153-155, January.
    8. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    9. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "Energy consumption, pollutant emissions and economic growth in South Africa," Energy Economics, Elsevier, vol. 32(6), pages 1374-1382, November.
    10. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    11. Barrett, Scott & Graddy, Kathryn, 2000. "Freedom, growth, and the environment," Environment and Development Economics, Cambridge University Press, vol. 5(4), pages 433-456, October.
    12. Pradyot Ranjan Jena, 2018. "Does trade liberalization create more pollution? Evidence from a panel regression analysis across the states of India," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 861-877, October.
    13. Khan, Muhammad Tariq Iqbal & Yaseen, Muhammad Rizwan & Ali, Qamar, 2019. "Nexus between financial development, tourism, renewable energy, and greenhouse gas emission in high-income countries: A continent-wise analysis," Energy Economics, Elsevier, vol. 83(C), pages 293-310.
    14. Sugiawan, Yogi & Managi, Shunsuke, 2016. "The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy," Energy Policy, Elsevier, vol. 98(C), pages 187-198.
    15. Dasgupta, Partha & Maler, Karl-Goran, 1995. "Poverty, institutions, and the environmental resource-base," Handbook of Development Economics, in: Hollis Chenery & T.N. Srinivasan (ed.), Handbook of Development Economics, edition 1, volume 3, chapter 39, pages 2371-2463, Elsevier.
    16. Managi, Shunsuke & Hibiki, Akira & Tsurumi, Tetsuya, 2009. "Does trade openness improve environmental quality?," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 346-363, November.
    17. Goel, Rajeev K. & Herrala, Risto & Mazhar, Ummad, 2013. "Institutional quality and environmental pollution: MENA countries versus the rest of the world," Economic Systems, Elsevier, vol. 37(4), pages 508-521.
    18. Yang, Mian & Wang, En-Ze & Hou, Yaru, 2021. "The relationship between manufacturing growth and CO2 emissions: Does renewable energy consumption matter?," Energy, Elsevier, vol. 232(C).
    19. Chen, Yulong & Zhao, Jincai & Lai, Zhizhu & Wang, Zheng & Xia, Haibin, 2019. "Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis," Renewable Energy, Elsevier, vol. 140(C), pages 341-353.
    20. Paramati, Sudharshan Reddy & Mo, Di & Gupta, Rakesh, 2017. "The effects of stock market growth and renewable energy use on CO2 emissions: Evidence from G20 countries," Energy Economics, Elsevier, vol. 66(C), pages 360-371.
    21. Torras, Mariano & Boyce, James K., 1998. "Income, inequality, and pollution: a reassessment of the environmental Kuznets Curve," Ecological Economics, Elsevier, vol. 25(2), pages 147-160, May.
    22. Sinha, Avik & Shahbaz, Muhammad & Sengupta, Tuhin, 2018. "Renewable Energy Policies and Contradictions in Causality: A case of Next 11 Countries," MPRA Paper 87542, University Library of Munich, Germany, revised 17 Jun 2018.
    23. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    24. Tetsuya Tsurumi & Shunsuke Managi, 2014. "The effect of trade openness on deforestation: empirical analysis for 142 countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(4), pages 305-324, October.
    25. Shafik, Nemat & Bandyopadhyay, Sushenjit, 1992. "Economic growth and environmental quality : time series and cross-country evidence," Policy Research Working Paper Series 904, The World Bank.
    26. Tetsuya Tsurumi & Shunsuke Managi, 2010. "Decomposition of the environmental Kuznets curve: scale, technique, and composition effects," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 11(1), pages 19-36, February.
    27. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    28. Selden Thomas M. & Song Daqing, 1994. "Environmental Quality and Development: Is There a Kuznets Curve for Air Pollution Emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 27(2), pages 147-162, September.
    29. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    30. Kazuki Kagohashi & Tetsuya Tsurumi & Shunsuke Managi, 2015. "The Effects of International Trade on Water Use," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    31. Apergis, Nicholas & Ben Jebli, Mehdi & Ben Youssef, Slim, 2018. "Does renewable energy consumption and health expenditures decrease carbon dioxide emissions? Evidence for sub-Saharan Africa countries," Renewable Energy, Elsevier, vol. 127(C), pages 1011-1016.
    32. You, Wan-Hai & Zhu, Hui-Ming & Yu, Keming & Peng, Cheng, 2015. "Democracy, Financial Openness, and Global Carbon Dioxide Emissions: Heterogeneity Across Existing Emission Levels," World Development, Elsevier, vol. 66(C), pages 189-207.
    33. Solarin, Sakiru Adebola & Al-Mulali, Usama & Musah, Ibrahim & Ozturk, Ilhan, 2017. "Investigating the pollution haven hypothesis in Ghana: An empirical investigation," Energy, Elsevier, vol. 124(C), pages 706-719.
    34. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    35. Kim, Jeayoon & Park, Kwangwoo, 2016. "Financial development and deployment of renewable energy technologies," Energy Economics, Elsevier, vol. 59(C), pages 238-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pradyot Ranjan Jena & Shunsuke Managi & Babita Majhi, 2021. "Forecasting the CO 2 Emissions at the Global Level: A Multilayer Artificial Neural Network Modelling," Energies, MDPI, vol. 14(19), pages 1-23, October.
    2. Shahbaz, Muhammad & Balsalobre-Lorente, Daniel & Sinha, Avik, 2019. "Foreign Direct Investment–CO2 Emissions Nexus in Middle East and North African countries: Importance of Biomass Energy Consumption," MPRA Paper 91729, University Library of Munich, Germany, revised 19 Jan 2019.
    3. Pradyot Ranjan Jena, 2018. "Does trade liberalization create more pollution? Evidence from a panel regression analysis across the states of India," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 861-877, October.
    4. Le Hoang Phong & Dang Thi Bach Van & Ho Hoang Gia Bao, 2018. "The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 275-283.
    5. Bali Swain, Ranjula & Kambhampati, Uma S. & Karimu, Amin, 2020. "Regulation, governance and the role of the informal sector in influencing environmental quality?," Ecological Economics, Elsevier, vol. 173(C).
    6. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    7. Cristian Barra & Roberto Zotti, 2018. "Investigating the non-linearity between national income and environmental pollution: international evidence of Kuznets curve," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 179-210, January.
    8. Balsalobre-Lorente, Daniel & Driha, Oana M. & Shahbaz, Muhammad & Sinha, Avik, 2020. "The effects of tourism and globalization over environmental degradation in developed countries," MPRA Paper 100092, University Library of Munich, Germany.
    9. Pandelis Mitsis, 2012. "Is there an Environmental Kuznets Curve in the Carbon Dioxide Emissions?," University of Cyprus Working Papers in Economics 16-2012, University of Cyprus Department of Economics.
    10. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Sinha, Avik & Sengupta, Tuhin & Qin, Quande, 2020. "How Renewable Energy Consumption Contribute to Environmental Quality? The Role of Education in OECD Countries," MPRA Paper 100259, University Library of Munich, Germany, revised 08 May 2020.
    11. You, Wan-Hai & Zhu, Hui-Ming & Yu, Keming & Peng, Cheng, 2015. "Democracy, Financial Openness, and Global Carbon Dioxide Emissions: Heterogeneity Across Existing Emission Levels," World Development, Elsevier, vol. 66(C), pages 189-207.
    12. Jie He, 2007. "Is the Environmental Kuznets Curve hypothesis valid for developing countries? A survey," Cahiers de recherche 07-03, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    13. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    14. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    15. Xiaosheng Li & Xia Yan & Qingxian An & Ke Chen & Zhen Shen, 2016. "The coordination between China’s economic growth and environmental emission from the Environmental Kuznets Curve viewpoint," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 233-252, August.
    16. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    17. Kammerlander, Andreas & Schulze, Günther G., 2020. "Are Democracies Cleaner?," European Journal of Political Economy, Elsevier, vol. 64(C).
    18. Amjad Ali & Marc Audi & Ismail Senturk & Yannick Roussel, 2022. "Do Sectoral Growth Promote CO2 Emissions in Pakistan? Time Series Analysis in Presence of Structural Break," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 410-425, March.
    19. Kais, Saidi & Sami, Hammami, 2016. "An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1101-1110.
    20. Erik Hille & Bernhard Lambernd & Aviral K. Tiwari, 2021. "Any Signs of Green Growth? A Spatial Panel Analysis of Regional Air Pollution in South Korea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 719-760, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5260-:d:803152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.