IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3611-d774743.html
   My bibliography  Save this article

Barriers to Blockchain Adoption in the Circular Economy: A Fuzzy Delphi and Best-Worst Approach

Author

Listed:
  • Abderahman Rejeb

    (Doctoral School of Regional Sciences and Business Administration‚ Széchenyi István University‚ 9026 Győr, Hungary)

  • Karim Rejeb

    (Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia)

  • John G. Keogh

    (McGill Centre for the Convergence of Health and Economics (MCCHE), Desautels Faculty of Management, McGill University, Montreal, QC H3A 0G4, Canada)

  • Suhaiza Zailani

    (Department of Operations Management and Information System, Faculty of Business and Accountancy, University Malaya, Kuala Lumpur 50203, Malaysia)

Abstract

Blockchain can help to fundamentally alter aspects of circular economy (CE) activities and overcome pressing sustainability issues. Nevertheless, limited studies have investigated the barriers to blockchain adoption in the CE. This study aims to close the knowledge gap by providing a comprehensive review of the barriers hampering the adoption and integration of blockchain technology in the CE. An integrated approach based on fuzzy Delphi and best-worst methods has been applied to analyze and rank the barriers. Sixteen barriers to blockchain adoption in the CE were identified from the academic literature and validated by a panel of experts. The findings from the fuzzy Delphi technique identified ten significant barriers for further analysis. Then, using the best-worst method, the optimal weights were determined based on the experts’ judgment to recognize the importance of each barrier. The findings from this method showed that a lack of knowledge and management support, reluctance to change and technological immaturity are the most significant barriers. In contrast, the least significant barriers are investment costs, security risks, and scalability issues. Theoretically, this study is the first to apply an integrated approach combining fuzzy Delphi and best-worst techniques to prioritze the barriers to blockchain adoption in the CE. It also provides valuable insights for managers and decision-makers that can be used to optimize blockchain implementations in the CE.

Suggested Citation

  • Abderahman Rejeb & Karim Rejeb & John G. Keogh & Suhaiza Zailani, 2022. "Barriers to Blockchain Adoption in the Circular Economy: A Fuzzy Delphi and Best-Worst Approach," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3611-:d:774743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3611/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xue Ning & Ronald Ramirez & Jiban Khuntia, 2021. "Blockchain-enabled government efficiency and impartiality: using blockchain for targeted poverty alleviation in a city in China," Information Technology for Development, Taylor & Francis Journals, vol. 27(3), pages 599-616, July.
    2. Katrien Steenmans & Phillip Taylor & Ine Steenmans, 2021. "Blockchain Technology for Governance of Plastic Waste Management: Where Are We?," Social Sciences, MDPI, vol. 10(11), pages 1-24, November.
    3. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    4. Choi, Tsan-Ming & Chen, Yue, 2021. "Circular supply chain management with large scale group decision making in the big data era: The macro-micro model," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    5. Daeheon Choi & Chune Young Chung & Thou Seyha & Jason Young, 2020. "Factors Affecting Organizations’ Resistance to the Adoption of Blockchain Technology in Supply Networks," Sustainability, MDPI, vol. 12(21), pages 1-37, October.
    6. Bauwens, Thomas & Hekkert, Marko & Kirchherr, Julian, 2020. "Circular futures: What Will They Look Like?," Ecological Economics, Elsevier, vol. 175(C).
    7. Xue, Bing & Chen, Xing-peng & Geng, Yong & Guo, Xiao-jia & Lu, Cheng-peng & Zhang, Zi-long & Lu, Chen-yu, 2010. "Survey of officials’ awareness on circular economy development in China: Based on municipal and county level," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1296-1302.
    8. Swikriti Khadke & Pragya Gupta & Shanmukh Rachakunta & Chandreswar Mahata & Suma Dawn & Mohit Sharma & Deepak Verma & Aniruddha Pradhan & Ambati Mounika Sai Krishna & Seeram Ramakrishna & Sabyasachi C, 2021. "Efficient Plastic Recycling and Remolding Circular Economy Using the Technology of Trust–Blockchain," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    9. Nesrin Ada & Yigit Kazancoglu & Muruvvet Deniz Sezer & Cigdem Ede-Senturk & Idil Ozer & Mangey Ram, 2021. "Analyzing Barriers of Circular Food Supply Chains and Proposing Industry 4.0 Solutions," Sustainability, MDPI, vol. 13(12), pages 1-29, June.
    10. Abdelghani Bekrar & Abdessamad Ait El Cadi & Raca Todosijevic & Joseph Sarkis, 2021. "Digitalizing the Closing-of-the-Loop for Supply Chains: A Transportation and Blockchain Perspective," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    11. Konstantinos Demestichas & Emmanouil Daskalakis, 2020. "Information and Communication Technology Solutions for the Circular Economy," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    12. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    13. Fenna Blomsma & Geraldine Brennan, 2017. "The Emergence of Circular Economy: A New Framing Around Prolonging Resource Productivity," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 603-614, June.
    14. Idiano D’Adamo & Gianluca Lupi, 2021. "Sustainability and Resilience after COVID-19: A Circular Premium in the Fashion Industry," Sustainability, MDPI, vol. 13(4), pages 1-5, February.
    15. Vipulesh Shardeo & Anchal Patil & Jitender Madaan, 2020. "Critical Success Factors for Blockchain Technology Adoption in Freight Transportation Using Fuzzy ANP–Modified TISM Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1549-1580, November.
    16. Kirchherr, Julian & Piscicelli, Laura & Bour, Ruben & Kostense-Smit, Erica & Muller, Jennifer & Huibrechtse-Truijens, Anne & Hekkert, Marko, 2018. "Barriers to the Circular Economy: Evidence From the European Union (EU)," Ecological Economics, Elsevier, vol. 150(C), pages 264-272.
    17. Abderahman Rejeb & John G. Keogh & Horst Treiblmaier, 2019. "Leveraging the Internet of Things and Blockchain Technology in Supply Chain Management," Future Internet, MDPI, vol. 11(7), pages 1-22, July.
    18. Rocsana Bucea-Manea-Țoniş & Aleksandar Šević & Milena P. Ilić & Radu Bucea-Manea-Țoniş & Nevenka Popović Šević & Larisa Mihoreanu, 2021. "Untapped Aspects of Innovation and Competition within a European Resilient Circular Economy. A Dual Comparative Study," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    19. Kannan, Devika & Jabbour, Ana Beatriz Lopes de Sousa & Jabbour, Charbel José Chiappetta, 2014. "Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company," European Journal of Operational Research, Elsevier, vol. 233(2), pages 432-447.
    20. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    21. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    22. Shojaei, Payam & Seyed Haeri, Seyed Amin & Mohammadi, Sahar, 2018. "Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 4-13.
    23. Xavier, Lúcia Helena & Giese, Ellen Cristine & Ribeiro-Duthie, Ana Cristina & Lins, Fernando Antonio Freitas, 2021. "Sustainability and the circular economy: A theoretical approach focused on e-waste urban mining," Resources Policy, Elsevier, vol. 74(C).
    24. Sultan Çetin & Catherine De Wolf & Nancy Bocken, 2021. "Circular Digital Built Environment: An Emerging Framework," Sustainability, MDPI, vol. 13(11), pages 1-34, June.
    25. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    26. Gianmarco Bressanelli & Marco Perona & Nicola Saccani, 2019. "Challenges in supply chain redesign for the Circular Economy: a literature review and a multiple case study," International Journal of Production Research, Taylor & Francis Journals, vol. 57(23), pages 7395-7422, December.
    27. Chiara Magrini & Jana Nicolas & Holger Berg & Alberto Bellini & Enrico Paolini & Nazarena Vincenti & Luca Campadello & Alessandra Bonoli, 2021. "Using Internet of Things and Distributed Ledger Technology for Digital Circular Economy Enablement: The Case of Electronic Equipment," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    28. Cristina Ciliberto & Katarzyna Szopik‐Depczyńska & Małgorzata Tarczyńska‐Łuniewska & Alessandro Ruggieri & Giuseppe Ioppolo, 2021. "Enabling the Circular Economy transition: a sustainable lean manufacturing recipe for Industry 4.0," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 3255-3272, November.
    29. Zhu, Shuai & Song, Malin & Lim, Ming Kim & Wang, Jianlin & Zhao, Jiajia, 2020. "The development of energy blockchain and its implications for China's energy sector," Resources Policy, Elsevier, vol. 66(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Ziqi & Zhao, Elena Yifei, 2024. "Collaborative driving mode of sustainable marketing and supply chain management supported by metaverse technology," LSE Research Online Documents on Economics 121160, London School of Economics and Political Science, LSE Library.
    2. Muwen Wang & Kecheng Zhang, 2022. "Improving Agricultural Green Supply Chain Management by a Novel Integrated Fuzzy-Delphi and Grey-WINGS Model," Agriculture, MDPI, vol. 12(10), pages 1-19, September.
    3. Abderahman Rejeb & Karim Rejeb & Suhaiza Zailani & Yasanur Kayikci & John G. Keogh, 2023. "Examining Knowledge Diffusion in the Circular Economy Domain: a Main Path Analysis," Circular Economy and Sustainability,, Springer.
    4. Chayada Kanokphanvanich & Wanchai Rattanawong & Varin Vongmanee, 2023. "A New Model for a Sustainable Healthcare Supply Chain Prioritizes Patient Safety: Using the Fuzzy Delphi Method to Identify Healthcare Workers’ Perspectives," Sustainability, MDPI, vol. 15(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasanur Kayikci & Nazlican Gozacan‐Chase & Abderahman Rejeb & Kaliyan Mathiyazhagan, 2022. "Critical success factors for implementing blockchain‐based circular supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3595-3615, November.
    2. Gianmarco Bressanelli & Federico Adrodegari & Daniela C. A. Pigosso & Vinit Parida, 2022. "Towards the Smart Circular Economy Paradigm: A Definition, Conceptualization, and Research Agenda," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    3. Chauhan, Chetna & Parida, Vinit & Dhir, Amandeep, 2022. "Linking circular economy and digitalisation technologies: A systematic literature review of past achievements and future promises," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    4. Wankmüller, Christian & Pulsfort, Johannes & Kunovjanek, Maximilian & Polt, Romana & Craß, Stefan & Reiner, Gerald, 2023. "Blockchain-based tokenization and its impact on plastic bottle supply chains," International Journal of Production Economics, Elsevier, vol. 257(C).
    5. Ulpan Tokkozhina & Ana Lucia Martins & Joao C. Ferreira, 2023. "Uncovering dimensions of the impact of blockchain technology in supply chain management," Operations Management Research, Springer, vol. 16(1), pages 99-125, March.
    6. Ashish Dwivedi & Dindayal Agrawal & Sanjoy Kumar Paul & Saurabh Pratap, 2023. "Modeling the blockchain readiness challenges for product recovery system," Annals of Operations Research, Springer, vol. 327(1), pages 493-537, August.
    7. Moritz Böhmecke‐Schwafert & Marie Wehinger & Robin Teigland, 2022. "Blockchain for the circular economy: Theorizing blockchain's role in the transition to a circular economy through an empirical investigation," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3786-3801, December.
    8. Vibeke Grupe Larsen & Valentina Antoniucci & Nicola Tollin & Peter Andreas Sattrup & Krister Jens & Morten Birkved & Tine Holmboe & Giuliano Marella, 2023. "A Methodological Framework to Foster Social Value Creation in Architectural Practice," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    9. Alejandro Aristi Capetillo & Fredric Bauer & Cristina Chaminade, 2023. "Emerging Technologies Supporting the Transition to a Circular Economy in the Plastic Materials Value Chain," Circular Economy and Sustainability,, Springer.
    10. Javid Nafari & Alireza Arab & Sina Ghaffari, 2017. "Through the Looking Glass: Analysis of Factors Influencing Iranian Student’s Study Abroad Motivations and Destination Choice," SAGE Open, , vol. 7(2), pages 21582440177, June.
    11. Gabi Försterling & Ronald Orth & Benjamin Gellert, 2023. "Transition to a Circular Economy in Europe through New Business Models: Barriers, Drivers, and Policy Making," Sustainability, MDPI, vol. 15(10), pages 1-40, May.
    12. Niloofar Etemadi & Pieter Van Gelder & Fernanda Strozzi, 2021. "An ISM Modeling of Barriers for Blockchain/Distributed Ledger Technology Adoption in Supply Chains towards Cybersecurity," Sustainability, MDPI, vol. 13(9), pages 1-28, April.
    13. Hervé Corvellec & Alison F. Stowell & Nils Johansson, 2022. "Critiques of the circular economy," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 421-432, April.
    14. Abderahman Rejeb & John G. Keogh & Suhaiza Zailani & Horst Treiblmaier & Karim Rejeb, 2020. "Blockchain Technology in the Food Industry: A Review of Potentials, Challenges and Future Research Directions," Logistics, MDPI, vol. 4(4), pages 1-26, October.
    15. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    16. Li, Qingying & Ma, Manqiong & Shi, Tianqin & Zhu, Chen, 2022. "Green investment in a sustainable supply chain: The role of blockchain and fairness," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    17. Büşra Ayan & Elif Güner & Semen Son-Turan, 2022. "Blockchain Technology and Sustainability in Supply Chains and a Closer Look at Different Industries: A Mixed Method Approach," Logistics, MDPI, vol. 6(4), pages 1-39, December.
    18. Bai, Chunguang & Zhu, Qingyun & Sarkis, Joseph, 2021. "Joint blockchain service vendor-platform selection using social network relationships: A multi-provider multi-user decision perspective," International Journal of Production Economics, Elsevier, vol. 238(C).
    19. Animesh Ghosh & Prabha Bhola & Uthayasankar Sivarajah, 2022. "Emerging Associates of the Circular Economy: Analysing Interactions and Trends by a Mixed Methods Systematic Review," Sustainability, MDPI, vol. 14(16), pages 1-41, August.
    20. Julian Kirchherr & Thomas Bauwens & Tomás B. Ramos, 2023. "Circular disruption: Concepts, enablers and ways ahead," Business Strategy and the Environment, Wiley Blackwell, vol. 32(3), pages 1005-1009, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3611-:d:774743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.