IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p3057-d764826.html
   My bibliography  Save this article

Identifying Knowledge and Process Gaps from a Systematic Literature Review of Net-Zero Definitions

Author

Listed:
  • Jane Loveday

    (Curtin University Sustainability Policy Institute, School of Design and the Built Environment, Curtin University, Bentley, WA 6102, Australia)

  • Gregory M. Morrison

    (Curtin University Sustainability Policy Institute, School of Design and the Built Environment, Curtin University, Bentley, WA 6102, Australia
    School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia)

  • David A. Martin

    (Curtin University Sustainability Policy Institute, School of Design and the Built Environment, Curtin University, Bentley, WA 6102, Australia)

Abstract

The use of the term ‘net zero’ has rapidly and recently become mainstream but is often not well-defined in the literature. A brief history of the term was researched, followed by a systematic literature review to consider the research question: how have the different net-zero terms been defined in the literature, and do they indicate knowledge or process gaps which identify future research opportunities? Academic research articles were searched for the term ‘net zero’ and filtered for the term ‘definition’, resulting in 65 articles. Definitions were analysed according to scale: single-building, community, urban-system, and country-wide scale. The search did not return any definitions concerning country-wide emissions (from agriculture, forestry, large-scale transportation, or industrial and mining processes), a surprising outcome given the emissions impact of these areas. The main knowledge and process gaps were found to be in four areas: governance, design, measurement and verification, and circular framework. A clear net-zero definition is required at the appropriate scale (single-building or urban-system scale), which includes explicit system boundaries and emission scopes, life-cycle energy and greenhouse gas (GHG) emissions and should incorporate a dynamic approach. The scale most likely to achieve net zero is the urban-system scale due to the potential synergies of its interacting elements and energy flows.

Suggested Citation

  • Jane Loveday & Gregory M. Morrison & David A. Martin, 2022. "Identifying Knowledge and Process Gaps from a Systematic Literature Review of Net-Zero Definitions," Sustainability, MDPI, vol. 14(5), pages 1-37, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:3057-:d:764826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/3057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/3057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Kuljeet & Hachem-Vermette, Caroline, 2021. "Economical energy resource planning to promote sustainable urban design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    3. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Maria Dousi & S. Hionidis & S. Kaliakos & Elena Mastrapostoli & Michael Nomikos & Mattheos Santamouris & Afroditi Synnefa & Giuseppe Peter V, 2017. "Design and performance analysis of a zero-energy settlement in Greece," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 141-161.
    4. Miguel Amado & Francesca Poggi & António Ribeiro Amado & Sílvia Breu, 2018. "E-City Web Platform: A Tool for Energy Efficiency at Urban Level," Energies, MDPI, vol. 11(7), pages 1-14, July.
    5. Kennedy, Scott & Sgouridis, Sgouris, 2011. "Rigorous classification and carbon accounting principles for low and Zero Carbon Cities," Energy Policy, Elsevier, vol. 39(9), pages 5259-5268, September.
    6. H. Damon Matthews & Nathan P. Gillett & Peter A. Stott & Kirsten Zickfeld, 2009. "The proportionality of global warming to cumulative carbon emissions," Nature, Nature, vol. 459(7248), pages 829-832, June.
    7. Stephan, André & Stephan, Laurent, 2020. "Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate," Applied Energy, Elsevier, vol. 280(C).
    8. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    9. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Devi Bühler & Thorsten Schuetze & Ranka Junge, 2015. "Towards Development of a Label for Zero Emission Buildings: A Tool to Evaluate Potential Zero Emission Buildings," Sustainability, MDPI, vol. 7(5), pages 1-23, April.
    11. Minunno, Roberto & O'Grady, Timothy & Morrison, Gregory M. & Gruner, Richard L., 2021. "Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Jeroen van der Heijden, 2018. "From leaders to majority: a frontrunner paradox in built-environment climate governance experimentation," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(8), pages 1383-1401, July.
    13. Goodfield, David & Anda, Martin & Ho, Goen, 2014. "Carbon neutral mine site villages: Myth or reality?," Renewable Energy, Elsevier, vol. 66(C), pages 62-68.
    14. María Beatriz Piderit & Franklin Vivanco & Geoffrey van Moeseke & Shady Attia, 2019. "Net Zero Buildings—A Framework for an Integrated Policy in Chile," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    15. Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Towards net zero energy in industrial and commercial buildings in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Sergio Bruno & Maria Dicorato & Massimo La Scala & Roberto Sbrizzai & Pio Alessandro Lombardi & Bartlomiej Arendarski, 2019. "Optimal Sizing and Operation of Electric and Thermal Storage in a Net Zero Multi Energy System," Energies, MDPI, vol. 12(17), pages 1-16, September.
    17. Wang, Ran & Feng, Wei & Wang, Lan & Lu, Shilei, 2021. "A comprehensive evaluation of zero energy buildings in cold regions: Actual performance and key technologies of cases from China, the US, and the European Union," Energy, Elsevier, vol. 215(PA).
    18. Berry, Stephen & Whaley, David & Davidson, Kathryn & Saman, Wasim, 2014. "Do the numbers stack up? Lessons from a zero carbon housing estate," Renewable Energy, Elsevier, vol. 67(C), pages 80-89.
    19. Matthew J Page & Joanne E McKenzie & Patrick M Bossuyt & Isabelle Boutron & Tammy C Hoffmann & Cynthia D Mulrow & Larissa Shamseer & Jennifer M Tetzlaff & Elie A Akl & Sue E Brennan & Roger Chou & Jul, 2021. "The PRISMA 2020 statement: An updated guideline for reporting systematic reviews," PLOS Medicine, Public Library of Science, vol. 18(3), pages 1-15, March.
    20. Joeri Rogelj & Oliver Geden & Annette Cowie & Andy Reisinger, 2021. "Net-zero emissions targets are vague: three ways to fix," Nature, Nature, vol. 591(7850), pages 365-368, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anthony P. Heynen & Prabhakaran Vanaraja Ambeth, 2023. "Sustainable Legacies of a Climate Positive Olympic Games: An Assessment of Carbon Offsets and Renewable Energy for Brisbane 2032," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    2. Philip C. Hutton & Elena A. Mikhailova & Lili Lin & Zhenbang Hao & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & George B. Shepherd, 2022. "Net-Zero Target and Emissions from Land Conversions: A Case Study of Maryland’s Climate Solutions Now Act," Geographies, MDPI, vol. 3(1), pages 1-20, December.
    3. Elise Talgorn & Helle Ullerup, 2023. "Invoking ‘Empathy for the Planet’ through Participatory Ecological Storytelling: From Human-Centered to Planet-Centered Design," Sustainability, MDPI, vol. 15(10), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    2. Gustav Engström & Johan Gars, 2016. "Climatic Tipping Points and Optimal Fossil-Fuel Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 541-571, November.
    3. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    4. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    5. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
    6. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    7. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
    8. Marcel Nutz & Florian Stebegg, 2022. "Climate change adaptation under heterogeneous beliefs," Mathematics and Financial Economics, Springer, volume 16, number 3, June.
    9. Lorenzo Pellegrini & Murat Arsel & Gorka Muñoa & Guillem Rius-Taberner & Carlos Mena & Martí Orta-Martínez, 2024. "The atlas of unburnable oil for supply-side climate policies," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Nicolas Taconet & Céline Guivarch & Antonin Pottier, 2019. "Social Cost of Carbon under stochastic tipping points: when does risk play a role?," Working Papers hal-02408904, HAL.
    11. Emanuele Campiglio & Alessandro Spiganti & Anthony Wiskich, 2023. "Clean Innovation and Heterogeneous Financing Costs," CAMA Working Papers 2023-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University, revised Oct 2023.
    12. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    13. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    14. Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Bruno Conte & Klaus Desmet & Dávid Krisztián Nagy & Esteban Rossi-Hansberg, 2021. "Local sectoral specialization in a warming world," Journal of Economic Geography, Oxford University Press, vol. 21(4), pages 493-530.
    16. Adeline Gueret & Paul Malliet & Aurélien Saussay & Xavier Timbeau, 2018. "An explorative evaluation of the climate debt," Sciences Po publications info:hdl:2441/f7llt62fa81, Sciences Po.
    17. Adrien Vogt-Schilb & Guy Meunier & Stéphane Hallegatte, 2013. "Should marginal abatement costs differ across sectors? The effect of low-carbon capital accumulation," Working Papers hal-00850682, HAL.
    18. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    19. Dietz, Simon & Venmans, Frank, 2019. "Cumulative carbon emissions and economic policy: In search of general principles," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 108-129.
    20. Rick van der Ploeg, 2020. "Discounting and Climate Policy," CESifo Working Paper Series 8441, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:3057-:d:764826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.