IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3389-d263473.html
   My bibliography  Save this article

Optimal Sizing and Operation of Electric and Thermal Storage in a Net Zero Multi Energy System

Author

Listed:
  • Sergio Bruno

    (Department of Electrical and Information Engineering (DEI)–Politecnico di Bari, 70125 Bari, Italy)

  • Maria Dicorato

    (Department of Electrical and Information Engineering (DEI)–Politecnico di Bari, 70125 Bari, Italy)

  • Massimo La Scala

    (Department of Electrical and Information Engineering (DEI)–Politecnico di Bari, 70125 Bari, Italy)

  • Roberto Sbrizzai

    (Department of Electrical and Information Engineering (DEI)–Politecnico di Bari, 70125 Bari, Italy)

  • Pio Alessandro Lombardi

    (Fraunhofer Institute for Factory Operation and Automation IFF, 39106 Magdeburg, Germany)

  • Bartlomiej Arendarski

    (Fraunhofer Institute for Factory Operation and Automation IFF, 39106 Magdeburg, Germany)

Abstract

In this this paper, the optimal sizing of electric and thermal storage is applied to the novel definition of a net zero multi energy system (NZEMS). A NZMES is based on producing electricity exclusively from renewable energy sources (RES) and converting it into other energy forms to satisfy multiple energy needs of a community. Due to the intermittent nature of RES, storage resources are needed to increase the self-sufficiency of the system. Possible storage sizing choices are examined considering, on an annual basis, the solution of a predictive control problem aimed at optimizing daily operation. For each day of the year, a predictive control problem is formulated and solved, aimed at minimizing operating costs. Electric, thermal, and (electric) transportation daily curves and expected RES production are assessed by means of a model that includes environmental parameters. Test results, based on the energy model of a small rural village, show expected technical-economic performance of different planning solutions, highlighting how the renewable energy mix influences the choice of both thermal and electric storage, and how self-sufficiency can affect the overall cost of energy.

Suggested Citation

  • Sergio Bruno & Maria Dicorato & Massimo La Scala & Roberto Sbrizzai & Pio Alessandro Lombardi & Bartlomiej Arendarski, 2019. "Optimal Sizing and Operation of Electric and Thermal Storage in a Net Zero Multi Energy System," Energies, MDPI, vol. 12(17), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3389-:d:263473
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3389/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3389/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lombardi, P. & Schwabe, F., 2017. "Sharing economy as a new business model for energy storage systems," Applied Energy, Elsevier, vol. 188(C), pages 485-496.
    2. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    3. Evgeny Lisin & Daria Shuvalova & Irina Volkova & Wadim Strielkowski, 2018. "Sustainable Development of Regional Power Systems and the Consumption of Electric Energy," Sustainability, MDPI, vol. 10(4), pages 1-10, April.
    4. Zhang, Sheng & Huang, Pei & Sun, Yongjun, 2016. "A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties," Energy, Elsevier, vol. 94(C), pages 654-665.
    5. Tom Brijs & Arne van Stiphout & Sauleh Siddiqui & Ronnie Belmans, 2016. "Evaluating the Role of Electricity Storage by Considering Short-Term Operation in Long-Term Planning," Discussion Papers of DIW Berlin 1624, DIW Berlin, German Institute for Economic Research.
    6. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    7. Marszal, Anna Joanna & Heiselberg, Per, 2011. "Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark," Energy, Elsevier, vol. 36(9), pages 5600-5609.
    8. Leckner, Mitchell & Zmeureanu, Radu, 2011. "Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem," Applied Energy, Elsevier, vol. 88(1), pages 232-241, January.
    9. Constantin Zopounidis & Michael Doumpos, 2017. "Multiple Criteria Decision Making," Post-Print hal-02880222, HAL.
    10. Müller, Matthias Otto & Stämpfli, Adrian & Dold, Ursula & Hammer, Thomas, 2011. "Energy autarky: A conceptual framework for sustainable regional development," Energy Policy, Elsevier, vol. 39(10), pages 5800-5810, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sokolnikova, P. & Lombardi, P. & Arendarski, B. & Suslov, K. & Pantaleo, A.M. & Kranhold, M. & Komarnicki, P., 2020. "Net-zero multi-energy systems for Siberian rural communities: A methodology to size thermal and electric storage units," Renewable Energy, Elsevier, vol. 155(C), pages 979-989.
    2. Julia Schulz & Daniel Leinmüller & Adam Misik & Michael F. Zaeh, 2021. "Renewable On-Site Power Generation for Manufacturing Companies—Technologies, Modeling, and Dimensioning," Sustainability, MDPI, vol. 13(7), pages 1-27, April.
    3. Jane Loveday & Gregory M. Morrison & David A. Martin, 2022. "Identifying Knowledge and Process Gaps from a Systematic Literature Review of Net-Zero Definitions," Sustainability, MDPI, vol. 14(5), pages 1-37, March.
    4. Christoph Wenge & Robert Pietracho & Stephan Balischewski & Bartlomiej Arendarski & Pio Lombardi & Przemyslaw Komarnicki & Leszek Kasprzyk, 2020. "Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience," Energies, MDPI, vol. 13(18), pages 1-18, September.
    5. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    6. Aleksei Khimenko & Dmitry Tikhomirov & Stanislav Trunov & Aleksey Kuzmichev & Vadim Bolshev & Olga Shepovalova, 2022. "Electric Heating System with Thermal Storage Units and Ceiling Fans for Cattle-Breeding Farms," Agriculture, MDPI, vol. 12(11), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sokolnikova, P. & Lombardi, P. & Arendarski, B. & Suslov, K. & Pantaleo, A.M. & Kranhold, M. & Komarnicki, P., 2020. "Net-zero multi-energy systems for Siberian rural communities: A methodology to size thermal and electric storage units," Renewable Energy, Elsevier, vol. 155(C), pages 979-989.
    2. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Li, Hangxin & Wang, Shengwei, 2019. "Coordinated optimal design of zero/low energy buildings and their energy systems based on multi-stage design optimization," Energy, Elsevier, vol. 189(C).
    4. Kim, Chungil & Jeong, Myeong Sang & Ko, Jaehwan & Ko, MyeongGeun & Kang, Min Gu & Song, Hyung-Jun, 2021. "Inhomogeneous rear reflector induced hot-spot risk and power loss in building-integrated bifacial c-Si photovoltaic modules," Renewable Energy, Elsevier, vol. 163(C), pages 825-835.
    5. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    6. Mohamed, Ayman & Hasan, Ala & Sirén, Kai, 2014. "Fulfillment of net-zero energy building (NZEB) with four metrics in a single family house with different heating alternatives," Applied Energy, Elsevier, vol. 114(C), pages 385-399.
    7. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "A robust design of nearly zero energy building systems considering performance degradation and maintenance," Energy, Elsevier, vol. 163(C), pages 905-919.
    8. Pan, R. & Gutowski, T.G. & Sekulic, D.P., 2017. "Built environment energy trade-offs scaling," Energy, Elsevier, vol. 141(C), pages 1374-1383.
    9. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Lamnatou, Chr. & Chemisana, D. & Mateus, R. & Almeida, M.G. & Silva, S.M., 2015. "Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems," Renewable Energy, Elsevier, vol. 75(C), pages 833-846.
    11. Li, Hangxin & Wang, Shengwei & Tang, Rui, 2019. "Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions," Applied Energy, Elsevier, vol. 254(C).
    12. Li, Hao & Zhong, Shengyuan & Wang, Yongzhen & Zhao, Jun & Li, Minxia & Wang, Fu & Zhu, Jiebei, 2020. "New understanding on information’s role in the matching of supply and demand of distributed energy system," Energy, Elsevier, vol. 206(C).
    13. Hee-Won Lim & Ji-Hyeon Kim & Hyeun-Seung Lee & U-Cheul Shin, 2021. "Case Study of Load Matching and Energy Cost for Net-Zero Energy Houses in Korea," Energies, MDPI, vol. 14(19), pages 1-11, October.
    14. Fina, Bernadette & Auer, Hans & Friedl, Werner, 2019. "Profitability of PV sharing in energy communities: Use cases for different settlement patterns," Energy, Elsevier, vol. 189(C).
    15. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    17. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    18. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    19. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    20. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3389-:d:263473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.