IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp1374-1383.html

Built environment energy trade-offs scaling

Author

Listed:
  • Pan, R.
  • Gutowski, T.G.
  • Sekulic, D.P.

Abstract

In this study, a scaling of a series of high level built environment energy models has been introduced, enabling an assessment of energy trade-offs in terms of selected dimensionless governing parameters. The developed models' additional objective is to offer a tool needed to assess the order of magnitude estimates of an influence a system may have on the environment in terms of both the resources utilization and an impact of the built environment's heat dissipation (thermal footprint) on the surroundings. Moreover, the approach enables an assessment of energy trade-offs trends of change caused by the changes in individual contributions of the subsystems. The significance and innovativeness of the models are in an attempt to identify relevant energy trade-off dimensionless parameters. The models are not intended to offer a full scale analysis of energy flows but they can be used at multiple systems' scales. The complexity of the models can be increased based on the adopted set of assumptions. An applicability of the models was demonstrated by the analysis of the three categories of systems: (i) an automobile factory, (ii) a passive house and (iii) a zero energy building. The empirical data sets and their changes illustrate the scaling approach applicability.

Suggested Citation

  • Pan, R. & Gutowski, T.G. & Sekulic, D.P., 2017. "Built environment energy trade-offs scaling," Energy, Elsevier, vol. 141(C), pages 1374-1383.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1374-1383
    DOI: 10.1016/j.energy.2017.11.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217318881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Abanda, F.H. & Byers, L., 2016. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)," Energy, Elsevier, vol. 97(C), pages 517-527.
    2. Zhang, Sheng & Huang, Pei & Sun, Yongjun, 2016. "A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties," Energy, Elsevier, vol. 94(C), pages 654-665.
    3. Ben Ayed, S. & Kim, D. & Borggaard, J.T. & Cliff, E.M., 2016. "Optimal control of indoor-air cooling in buildings using a reduced order model," Energy, Elsevier, vol. 116(P1), pages 1191-1204.
    4. Marszal, Anna Joanna & Heiselberg, Per, 2011. "Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark," Energy, Elsevier, vol. 36(9), pages 5600-5609.
    5. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    6. Iturriaga, E. & Aldasoro, U. & Campos-Celador, A. & Sala, J.M., 2017. "A general model for the optimization of energy supply systems of buildings," Energy, Elsevier, vol. 138(C), pages 954-966.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    3. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Li, Hangxin & Wang, Shengwei, 2020. "Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties," Applied Energy, Elsevier, vol. 265(C).
    5. Sergio Bruno & Maria Dicorato & Massimo La Scala & Roberto Sbrizzai & Pio Alessandro Lombardi & Bartlomiej Arendarski, 2019. "Optimal Sizing and Operation of Electric and Thermal Storage in a Net Zero Multi Energy System," Energies, MDPI, vol. 12(17), pages 1-16, September.
    6. Hou, Dan & Huang, Jiayu & Wang, Yanyu, 2023. "A comparison of approaches with different constraint handling techniques for energy-efficient building form optimization," Energy, Elsevier, vol. 277(C).
    7. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "A robust design of nearly zero energy building systems considering performance degradation and maintenance," Energy, Elsevier, vol. 163(C), pages 905-919.
    8. Lucas Rosse Caldas & Maykon Vieira Silva & Vítor Pereira Silva & Michele Tereza Marques Carvalho & Romildo Dias Toledo Filho, 2022. "How Different Tools Contribute to Climate Change Mitigation in a Circular Building Environment?—A Systematic Literature Review," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    9. Hassan, Ahmed A. & El-Rayes, Khaled, 2024. "Optimal use of renewable energy technologies during building schematic design phase," Applied Energy, Elsevier, vol. 353(PA).
    10. Li, Hangxin & Wang, Shengwei, 2019. "Coordinated optimal design of zero/low energy buildings and their energy systems based on multi-stage design optimization," Energy, Elsevier, vol. 189(C).
    11. Muhammad Altaf & Wesam Salah Alaloul & Muhammad Ali Musarat & Abdul Hannan Qureshi, 2023. "Life cycle cost analysis (LCCA) of construction projects: sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12071-12118, November.
    12. Jinhui Ma & Haijing Huang & Mingxi Peng & Yihuan Zhou, 2024. "Investigating the Heterogeneity Effects of Urban Morphology on Building Energy Consumption from a Spatio-Temporal Perspective Using Old Residential Buildings on a University Campus," Land, MDPI, vol. 13(10), pages 1-24, October.
    13. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    14. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    15. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    16. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    17. Sungwoo Lee & Sungho Tae & Seungjun Roh & Taehyung Kim, 2015. "Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    18. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    19. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    20. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1374-1383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.