IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2673-d509093.html
   My bibliography  Save this article

Public Sentiment toward Solar Energy—Opinion Mining of Twitter Using a Transformer-Based Language Model

Author

Listed:
  • Serena Y. Kim

    (School of Public Affairs, University of Colorado Denver, 1380 Lawrence St., Denver, CO 80204, USA
    Department of Computer Science, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, USA)

  • Koushik Ganesan

    (Department of Physics, University of Colorado Boulder, 2000 Colorado Ave, Boulder, CO 80309, USA
    The second and third authors (Ganesan, K. and Dickens, P.) contributed equally to this study.)

  • Princess Dickens

    (Department of Linguistics, University of Colorado Boulder, Hellems 290, Boulder, CO 80309, USA
    The second and third authors (Ganesan, K. and Dickens, P.) contributed equally to this study.)

  • Soumya Panda

    (Department of Business Analytics, University of Colorado Boulder, 995 Regent Dr, Boulder, CO 80309, USA)

Abstract

Public acceptance and support for renewable energy are important determinants of the low-carbon energy transition. This paper examines public sentiment toward solar energy in the United States using data from Twitter, a micro-blogging platform on which people post messages, known as tweets. We filtered tweets specific to solar energy and performed a classification task using Robustly optimized Bidirectional Encoder Representations from Transformers (RoBERTa). Our RoBERTa-based sentiment classification model, fine-tuned with 6300 manually annotated tweets specific to solar energy, attains 80.2% accuracy for ternary (positive, neutral, or negative) classification. Analyzing 266,686 tweets during the period of January to December 2020, we find public sentiment varies widely across states (Coefficient of Variation = 164.66 % ). Within the study period, the Northeast U.S. region shows more positive sentiment toward solar energy than did the South U.S. region. Public opinion on solar energy is more positive in states with a larger share of Democratic voters in the 2020 presidential election. Public sentiment toward solar energy is more positive in states with consumer-friendly net metering policies and a more mature solar market. States that wish to gain public support for solar energy might want to consider implementing consumer-friendly net metering policies and support the growth of solar businesses.

Suggested Citation

  • Serena Y. Kim & Koushik Ganesan & Princess Dickens & Soumya Panda, 2021. "Public Sentiment toward Solar Energy—Opinion Mining of Twitter Using a Transformer-Based Language Model," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2673-:d:509093
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wolsink, Maarten, 2007. "Wind power implementation: The nature of public attitudes: Equity and fairness instead of 'backyard motives'," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1188-1207, August.
    2. Kosenius, Anna-Kaisa & Ollikainen, Markku, 2013. "Valuation of environmental and societal trade-offs of renewable energy sources," Energy Policy, Elsevier, vol. 62(C), pages 1148-1156.
    3. Sardianou, E. & Genoudi, P., 2013. "Which factors affect the willingness of consumers to adopt renewable energies?," Renewable Energy, Elsevier, vol. 57(C), pages 1-4.
    4. Bidwell, David, 2013. "The role of values in public beliefs and attitudes towards commercial wind energy," Energy Policy, Elsevier, vol. 58(C), pages 189-199.
    5. Kardooni, Roozbeh & Yusoff, Sumiani Binti & Kari, Fatimah Binti & Moeenizadeh, Leila, 2018. "Public opinion on renewable energy technologies and climate change in Peninsular Malaysia," Renewable Energy, Elsevier, vol. 116(PA), pages 659-668.
    6. Herche, Wesley, 2017. "Solar energy strategies in the U.S. utility market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 590-595.
    7. Ladenburg, Jacob, 2010. "Attitudes towards offshore wind farms--The role of beach visits on attitude and demographic and attitude relations," Energy Policy, Elsevier, vol. 38(3), pages 1297-1304, March.
    8. Wyllie, Jamalia O.Y. & Essah, Emmanuel A. & Ofetotse, Eng L., 2018. "Barriers of solar energy uptake and the potential for mitigation solutions in Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 935-949.
    9. Kim, Serena Y., 2020. "Institutional arrangements and airport solar PV," Energy Policy, Elsevier, vol. 143(C).
    10. Kaldellis, J.K. & Kapsali, M. & Kaldelli, El. & Katsanou, Ev., 2013. "Comparing recent views of public attitude on wind energy, photovoltaic and small hydro applications," Renewable Energy, Elsevier, vol. 52(C), pages 197-208.
    11. Darghouth, Naïm R. & Wiser, Ryan H. & Barbose, Galen & Mills, Andrew D., 2016. "Net metering and market feedback loops: Exploring the impact of retail rate design on distributed PV deployment," Applied Energy, Elsevier, vol. 162(C), pages 713-722.
    12. Kim, Junghun & Park, Stephen Youngjun & Lee, Jongsu, 2018. "Do people really want renewable energy? Who wants renewable energy?: Discrete choice model of reference-dependent preference in South Korea," Energy Policy, Elsevier, vol. 120(C), pages 761-770.
    13. Gustafson, Abel & Goldberg, Matthew H. & Kotcher, John E. & Rosenthal, Seth A. & Maibach, Edward W. & Ballew, Matthew T. & Leiserowitz, Anthony, 2020. "Republicans and Democrats differ in why they support renewable energy," Energy Policy, Elsevier, vol. 141(C).
    14. Comello, Stephen & Reichelstein, Stefan, 2017. "Cost competitiveness of residential solar PV: The impact of net metering restrictions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 46-57.
    15. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    16. Kim, Jung Eun & Tang, Tian, 2020. "Preventing early lock-in with technology-specific policy designs: The Renewable Portfolio Standards and diversity in renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    17. Yin, Haitao & Powers, Nicholas, 2010. "Do state renewable portfolio standards promote in-state renewable generation[glottal stop]," Energy Policy, Elsevier, vol. 38(2), pages 1140-1149, February.
    18. Yi, Hongtao, 2014. "Green businesses in a clean energy economy: Analyzing drivers of green business growth in U.S. states," Energy, Elsevier, vol. 68(C), pages 922-929.
    19. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena & Braga, Ana Cristina, 2018. "Modelling perception and attitudes towards renewable energy technologies," Renewable Energy, Elsevier, vol. 122(C), pages 688-697.
    20. von Borgstede, Chris & Andersson, Maria & Johnsson, Filip, 2013. "Public attitudes to climate change and carbon mitigation—Implications for energy-associated behaviours," Energy Policy, Elsevier, vol. 57(C), pages 182-193.
    21. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    22. del Río, Pablo & Mir-Artigues, Pere, 2012. "Support for solar PV deployment in Spain: Some policy lessons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5557-5566.
    23. Leah C. Stokes & Christopher Warshaw, 2017. "Renewable energy policy design and framing influence public support in the United States," Nature Energy, Nature, vol. 2(8), pages 1-6, August.
    24. Noll, Daniel & Dawes, Colleen & Rai, Varun, 2014. "Solar Community Organizations and active peer effects in the adoption of residential PV," Energy Policy, Elsevier, vol. 67(C), pages 330-343.
    25. Brummer, Vasco, 2018. "Community energy – benefits and barriers: A comparative literature review of Community Energy in the UK, Germany and the USA, the benefits it provides for society and the barriers it faces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 187-196.
    26. Loureiro, Maria L. & Alló, Maria, 2020. "Sensing climate change and energy issues: Sentiment and emotion analysis with social media in the U.K. and Spain," Energy Policy, Elsevier, vol. 143(C).
    27. Sütterlin, Bernadette & Siegrist, Michael, 2017. "Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power," Energy Policy, Elsevier, vol. 106(C), pages 356-366.
    28. Noblet, Caroline L. & Teisl, Mario F. & Evans, Keith & Anderson, Mark W. & McCoy, Shannon & Cervone, Edmund, 2015. "Public preferences for investments in renewable energy production and energy efficiency," Energy Policy, Elsevier, vol. 87(C), pages 177-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngakan Ketut Acwin Dwijendra & Untung Rahardja & Narukullapati Bharath Kumar & Indrajit Patra & Musaddak Maher Abdul Zahra & Yulia Finogenova & John William Grimaldo Guerrero & Samar Emad Izzat & Taif, 2022. "An Analysis of Urban Block Initiatives Influencing Energy Consumption and Solar Energy Absorption," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    2. So-Yun Jeong & Jae-Wook Kim & Han-Young Joo & Young-Seo Kim & Joo-Hyun Moon, 2021. "Development and Application of a Big Data Analysis-Based Procedure to Identify Concerns about Renewable Energy," Energies, MDPI, vol. 14(16), pages 1-13, August.
    3. Raquel Ibar-Alonso & Raquel Quiroga-García & Mar Arenas-Parra, 2022. "Opinion Mining of Green Energy Sentiment: A Russia-Ukraine Conflict Analysis," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    4. Romée Lammers & Sikke R. Jansma & Bernard P. Veldkamp & Anna K. Machens & Matthias de Visser & Jordy F. Gosselt, 2023. "‘I Tweet about Our #GreenEnergy’—Automated Classification of Social Identity and Opinion Mining of the Dutch Twitter Discourse on Green-Energy Technologies," Sustainability, MDPI, vol. 15(22), pages 1-23, November.
    5. Chenghao Yang & Tongtong Liu, 2022. "Social Media Data in Urban Design and Landscape Research: A Comprehensive Literature Review," Land, MDPI, vol. 11(10), pages 1-22, October.
    6. Piselli, C. & Fronzetti Colladon, A. & Segneri, L. & Pisello, A.L., 2022. "Evaluating and improving social awareness of energy communities through semantic network analysis of online news," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Kamali Saraji, Mahyar & Aliasgari, Elahe & Streimikiene, Dalia, 2023. "Assessment of the challenges to renewable energy technologies adoption in rural areas: A Fermatean CRITIC-VIKOR approach," Technological Forecasting and Social Change, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ephraim Bonah Agyekum & Ernest Baba Ali & Nallapaneni Manoj Kumar, 2021. "Clean Energies for Ghana—An Empirical Study on the Level of Social Acceptance of Renewable Energy Development and Utilization," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    2. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    3. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    4. Lee, Juyong & Reiner, David M., 2023. "Determinants of public preferences on low-carbon energy sources: Evidence from the United Kingdom," Energy, Elsevier, vol. 284(C).
    5. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    6. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    7. Kim, Serena Y., 2020. "Institutional arrangements and airport solar PV," Energy Policy, Elsevier, vol. 143(C).
    8. L. Mundaca & H. Moncreiff, 2021. "New Perspectives on Green Energy Defaults," Journal of Consumer Policy, Springer, vol. 44(3), pages 357-383, September.
    9. Zerrahn, Alexander & Krekel, Christian, 2015. "Sowing the Wind and Reaping the Whirlwind? The Effect of Wind Turbines on Residential Well-Being," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112956, Verein für Socialpolitik / German Economic Association.
    10. Schriever, Marlene & Halstrup, Dominik, 2018. "Exploring the adoption in transitioning markets: Empirical findings and implications on energy storage solutions-acceptance in the German manufacturing industry," Energy Policy, Elsevier, vol. 120(C), pages 460-468.
    11. Salak, B. & Lindberg, K. & Kienast, F. & Hunziker, M., 2021. "How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Perlaviciute, Goda & Steg, Linda, 2014. "Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 361-381.
    13. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    14. Bertsch, Valentin & Hyland, Marie & Mahony, Michael, 2017. "What drives people's opinions of electricity infrastructure? Empirical evidence from Ireland," Energy Policy, Elsevier, vol. 106(C), pages 472-497.
    15. Yushi Kunugi & Toshi H. Arimura & Miwa Nakai, 2021. "The Long-Term Impact of Wind Power Generation on a Local Community: Economics Analysis of Subjective Well-Being Data in Chōshi City," Energies, MDPI, vol. 14(13), pages 1-18, July.
    16. Rahman, Arief & Richards, Russell & Dargusch, Paul & Wadley, David, 2023. "Pathways to reduce Indonesia’s dependence on oil and achieve longer-term decarbonization," Renewable Energy, Elsevier, vol. 202(C), pages 1305-1323.
    17. Kühnbach, Matthias & Pisula, Stefan & Bekk, Anke & Weidlich, Anke, 2020. "How much energy autonomy can decentralised photovoltaic generation provide? A case study for Southern Germany," Applied Energy, Elsevier, vol. 280(C).
    18. Anabela Botelho & Lina Lourenço-Gomes & Lígia M. Costa Pinto & Sara Sousa & Marieta Valente, 2018. "Discrete-choice experiments valuing local environmental impacts of renewables: two approaches to a case study in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 145-162, December.
    19. Langer, Katharina & Decker, Thomas & Menrad, Klaus, 2017. "Public participation in wind energy projects located in Germany: Which form of participation is the key to acceptance?," Renewable Energy, Elsevier, vol. 112(C), pages 63-73.
    20. Guillermo Valencia Ochoa & Jose Nunez Alvarez & Carlos Acevedo, 2019. "Research Evolution on Renewable Energies Resources from 2007 to 2017: A Comparative Study on Solar, Geothermal, Wind and Biomass Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 242-253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2673-:d:509093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.