IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59029-1.html
   My bibliography  Save this article

Quantifying the trade-offs between renewable energy visibility and system costs

Author

Listed:
  • Tsamara Tsani

    (Forschungszentrum Jülich GmbH
    RWTH Aachen University)

  • Tristan Pelser

    (Forschungszentrum Jülich GmbH
    RWTH Aachen University)

  • Romanos Ioannidis

    (Politecnico di Milano)

  • Rachel Maier

    (Forschungszentrum Jülich GmbH
    RWTH Aachen University)

  • Ruihong Chen

    (ETH Zürich)

  • Stanley Risch

    (Forschungszentrum Jülich GmbH
    RWTH Aachen University)

  • Felix Kullmann

    (Forschungszentrum Jülich GmbH)

  • Russell McKenna

    (ETH Zürich
    PSI)

  • Detlef Stolten

    (Forschungszentrum Jülich GmbH
    RWTH Aachen University)

  • Jann Michael Weinand

    (Forschungszentrum Jülich GmbH)

Abstract

Visual landscape impacts on scenic and populated places are among significant factors affecting local acceptance of large-scale renewable energy projects. Through the combination of large-scale reverse viewshed and techno-economic energy system analyses, we assess their potential impacts for nationwide energy systems. In our case study of Germany, moderate consideration of visual impact by placing renewables out of sight of the most scenic and densely populated areas does not have a significant impact on future energy system costs and design. In contrast, in scenarios assuming high sensitivity to visual impacts, annual energy system costs would increase by up to 38% in 2045. The energy system’s resilience would also be compromised due to the increasing reliance on green hydrogen imports and the uncertain mass adoption of rooftop photovoltaics. Our analytical framework facilitates careful planning that considers the visual impact of renewable energy infrastructure, thus enabling socially acceptable deployment while understanding the implications for system costs and transformation pathways.

Suggested Citation

  • Tsamara Tsani & Tristan Pelser & Romanos Ioannidis & Rachel Maier & Ruihong Chen & Stanley Risch & Felix Kullmann & Russell McKenna & Detlef Stolten & Jann Michael Weinand, 2025. "Quantifying the trade-offs between renewable energy visibility and system costs," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59029-1
    DOI: 10.1038/s41467-025-59029-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59029-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59029-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dröes, Martijn I. & Koster, Hans R.A., 2021. "Wind turbines, solar farms, and house prices," Energy Policy, Elsevier, vol. 155(C).
    2. Molnarova, Kristina & Sklenicka, Petr & Stiborek, Jiri & Svobodova, Kamila & Salek, Miroslav & Brabec, Elizabeth, 2012. "Visual preferences for wind turbines: Location, numbers and respondent characteristics," Applied Energy, Elsevier, vol. 92(C), pages 269-278.
    3. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    4. Reindl, K. & Palm, J., 2021. "Installing PV: Barriers and enablers experienced by non-residential property owners," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Ryberg, David Severin & Caglayan, Dilara Gulcin & Schmitt, Sabrina & Linßen, Jochen & Stolten, Detlef & Robinius, Martin, 2019. "The future of European onshore wind energy potential: Detailed distribution and simulation of advanced turbine designs," Energy, Elsevier, vol. 182(C), pages 1222-1238.
    6. Devine-Wright, Patrick & Wiersma, Bouke, 2020. "Understanding community acceptance of a potential offshore wind energy project in different locations: An island-based analysis of ‘place-technology fit’," Energy Policy, Elsevier, vol. 137(C).
    7. Windemer, Rebecca, 2023. "Acceptance should not be assumed. How the dynamics of social acceptance changes over time, impacting onshore wind repowering," Energy Policy, Elsevier, vol. 173(C).
    8. Morrissey, Karyn & Scheller, Fabian, 2024. "It takes a village: The role of community attributes in shaping solar photovoltaic adoption intention in Germany," Renewable Energy, Elsevier, vol. 237(PA).
    9. Hilary S. Boudet, 2019. "Public perceptions of and responses to new energy technologies," Nature Energy, Nature, vol. 4(6), pages 446-455, June.
    10. R. McKenna & J. M. Weinand & I. Mulalic & S. Petrović & K. Mainzer & T. Preis & H. S. Moat, 2021. "Scenicness assessment of onshore wind sites with geotagged photographs and impacts on approval and cost-efficiency," Nature Energy, Nature, vol. 6(6), pages 663-672, June.
    11. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    12. Felix Reutter & Charlotte Geiger & Paul Lehmann & Jan-Niklas Meier & Philip Tafarte, 2022. "Flächenziele für die Windenergie: Wie zielführend ist das neue Wind-an-Land-Gesetz? [Land Area Targets for Wind Energy: How Promising Is the New Onshore Wind Power Legislation?]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(9), pages 703-708, September.
    13. Wolsink, Maarten, 2007. "Wind power implementation: The nature of public attitudes: Equity and fairness instead of 'backyard motives'," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1188-1207, August.
    14. Braeuer, Fritz & Kleinebrahm, Max & Naber, Elias & Scheller, Fabian & McKenna, Russell, 2022. "Optimal system design for energy communities in multi-family buildings: the case of the German Tenant Electricity Law," Applied Energy, Elsevier, vol. 305(C).
    15. Kullmann, Felix & Markewitz, Peter & Kotzur, Leander & Stolten, Detlef, 2022. "The value of recycling for low-carbon energy systems - A case study of Germany's energy transition," Energy, Elsevier, vol. 256(C).
    16. Jeremy Firestone & Hannah Kirk, 2019. "A strong relative preference for wind turbines in the United States among those who live near them," Nature Energy, Nature, vol. 4(4), pages 311-320, April.
    17. Peter Lopion & Peter Markewitz & Detlef Stolten & Martin Robinius, 2019. "Cost Uncertainties in Energy System Optimization Models: A Quadratic Programming Approach for Avoiding Penny Switching Effects," Energies, MDPI, vol. 12(20), pages 1-12, October.
    18. Azarova, Valeriya & Cohen, Jed & Friedl, Christina & Reichl, Johannes, 2019. "Designing local renewable energy communities to increase social acceptance: Evidence from a choice experiment in Austria, Germany, Italy, and Switzerland," Energy Policy, Elsevier, vol. 132(C), pages 1176-1183.
    19. Strazzera, Elisabetta & Mura, Marina & Contu, Davide, 2012. "Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach," Energy Policy, Elsevier, vol. 48(C), pages 334-347.
    20. Aleh Cherp & Vadim Vinichenko & Jale Tosun & Joel A. Gordon & Jessica Jewell, 2021. "National growth dynamics of wind and solar power compared to the growth required for global climate targets," Nature Energy, Nature, vol. 6(7), pages 742-754, July.
    21. Alphan, H., 2021. "Modelling potential visibility of wind turbines: A geospatial approach for planning and impact mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    22. Ladenburg, Jacob & Termansen, Mette & Hasler, Berit, 2013. "Assessing acceptability of two onshore wind power development schemes: A test of viewshed effects and the cumulative effects of wind turbines," Energy, Elsevier, vol. 54(C), pages 45-54.
    23. Malte Jansen & Iain Staffell & Lena Kitzing & Sylvain Quoilin & Edwin Wiggelinkhuizen & Bernard Bulder & Iegor Riepin & Felix Müsgens, 2020. "Offshore wind competitiveness in mature markets without subsidy," Nature Energy, Nature, vol. 5(8), pages 614-622, August.
    24. Salomon, Hannes & Drechsler, Martin & Reutter, Felix, 2020. "Minimum distances for wind turbines: A robustness analysis of policies for a sustainable wind power deployment," Energy Policy, Elsevier, vol. 140(C).
    25. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    26. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    27. Lehmann, Paul & Tafarte, Philip, 2024. "Exclusion zones for renewable energy deployment: One man’s blessing, another man’s curse," Resource and Energy Economics, Elsevier, vol. 76(C).
    28. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2009. "The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2441-2451, December.
    29. David Bidwell, 2016. "Thinking through participation in renewable energy decisions," Nature Energy, Nature, vol. 1(5), pages 1-4, May.
    30. Hogan, Jessica L. & Warren, Charles R. & Simpson, Michael & McCauley, Darren, 2022. "What makes local energy projects acceptable? Probing the connection between ownership structures and community acceptance," Energy Policy, Elsevier, vol. 171(C).
    31. Ladenburg, Jacob, 2014. "Dynamic properties of the preferences for renewable energy sources – A wind power experience-based approach," Energy, Elsevier, vol. 76(C), pages 542-551.
    32. Ramírez-Rosado, Ignacio J. & García-Garrido, Eduardo & Fernández-Jiménez, L. Alfredo & Zorzano-Santamaría, Pedro J. & Monteiro, Cláudio & Miranda, Vladimiro, 2008. "Promotion of new wind farms based on a decision support system," Renewable Energy, Elsevier, vol. 33(4), pages 558-566.
    33. Gamboa, Gonzalo & Munda, Giuseppe, 2007. "The problem of windfarm location: A social multi-criteria evaluation framework," Energy Policy, Elsevier, vol. 35(3), pages 1564-1583, March.
    34. Reusswig, Fritz & Braun, Florian & Heger, Ines & Ludewig, Thomas & Eichenauer, Eva & Lass, Wiebke, 2016. "Against the wind: Local opposition to the German Energiewende," Utilities Policy, Elsevier, vol. 41(C), pages 214-227.
    35. Ryan Wiser & Karen Jenni & Joachim Seel & Erin Baker & Maureen Hand & Eric Lantz & Aaron Smith, 2016. "Expert elicitation survey on future wind energy costs," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    36. Wehrle, Sebastian & Gruber, Katharina & Schmidt, Johannes, 2021. "The cost of undisturbed landscapes," Energy Policy, Elsevier, vol. 159(C).
    37. Spielhofer, R. & Thrash, T. & Hayek, U. Wissen & Grêt-Regamey, A. & Salak, B. & Grübel, J. & Schinazi, V.R., 2021. "Physiological and behavioral reactions to renewable energy systems in various landscape types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    38. Nordensvärd, Johan & Urban, Frauke, 2015. "The stuttering energy transition in Germany: Wind energy policy and feed-in tariff lock-in," Energy Policy, Elsevier, vol. 82(C), pages 156-165.
    39. Wróżyński, Rafał & Sojka, Mariusz & Pyszny, Krzysztof, 2016. "The application of GIS and 3D graphic software to visual impact assessment of wind turbines," Renewable Energy, Elsevier, vol. 96(PA), pages 625-635.
    40. McKenna, R. & Mulalic, I. & Soutar, I. & Weinand, J.M. & Price, J. & Petrović, S. & Mainzer, K., 2022. "Exploring trade-offs between landscape impact, land use and resource quality for onshore variable renewable energy: an application to Great Britain," Energy, Elsevier, vol. 250(C).
    41. Stewart Fast & Warren Mabee & Jamie Baxter & Tanya Christidis & Liz Driver & Stephen Hill & J. J. McMurtry & Melody Tomkow, 2016. "Lessons learned from Ontario wind energy disputes," Nature Energy, Nature, vol. 1(2), pages 1-7, February.
    42. Alphan, Hakan, 2024. "Incorporating visibility information into multi-criteria decision making (MCDM) for wind turbine deployment," Applied Energy, Elsevier, vol. 353(PB).
    43. Cranmer, Alexana & Broughel, Anna Ebers & Ericson, Jonathan & Goldberg, Mike & Dharni, Kira, 2023. "Getting to 30 GW by 2030: Visual preferences of coastal residents for offshore wind farms on the US East Coast," Energy Policy, Elsevier, vol. 173(C).
    44. Ioannidis, R. & Mamassis, N. & Efstratiadis, A. & Koutsoyiannis, D., 2022. "Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    45. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    46. Sütterlin, Bernadette & Siegrist, Michael, 2017. "Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power," Energy Policy, Elsevier, vol. 106(C), pages 356-366.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsani, Tsamara & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Quantifying social factors for onshore wind planning – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    2. Pedersen, Jaap & Weinand, Jann Michael & Syranidou, Chloi & Rehfeldt, Daniel, 2024. "An efficient solver for large-scale onshore wind farm siting including cable routing," European Journal of Operational Research, Elsevier, vol. 317(2), pages 616-630.
    3. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    4. Ioannidis, R. & Mamassis, N. & Efstratiadis, A. & Koutsoyiannis, D., 2022. "Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. McKenna, Russell & Weinand, Jann Michael & Mulalic, Ismir & Petrovic, Stefan & Mainzer, Kai & Preis, Tobias & Moat, Helen Susannah, 2020. "Improving renewable energy resource assessments by quantifying landscape beauty," Working Paper Series in Production and Energy 43, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    6. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    7. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    8. Salak, B. & Lindberg, K. & Kienast, F. & Hunziker, M., 2021. "How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Jann Michael Weinand & Russell McKenna & Heidi Heinrichs & Michael Roth & Detlef Stolten & Wolf Fichtner, 2021. "Exploring the trilemma of cost-efficient, equitable and publicly acceptable onshore wind expansion planning," Papers 2106.15198, arXiv.org.
    10. McKenna, R. & Mulalic, I. & Soutar, I. & Weinand, J.M. & Price, J. & Petrović, S. & Mainzer, K., 2022. "Exploring trade-offs between landscape impact, land use and resource quality for onshore variable renewable energy: an application to Great Britain," Energy, Elsevier, vol. 250(C).
    11. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    12. Anna Codemo & Ambra Barbini & Ahi Mantouza & Anastasios Bitziadis & Rossano Albatici, 2023. "Integration of Public Perception in the Assessment of Licensed Solar Farms: A Case Study in Greece," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    13. Pohl, Johannes & Rudolph, David & Lyhne, Ivar & Clausen, Niels-Erik & Aaen, Sara Bjørn & Hübner, Gundula & Kørnøv, Lone & Kirkegaard, Julia K., 2021. "Annoyance of residents induced by wind turbine obstruction lights: A cross-country comparison of impact factors," Energy Policy, Elsevier, vol. 156(C).
    14. Rodríguez-Segura, Francisco Javier & Osorio-Aravena, Juan Carlos & Frolova, Marina & Terrados-Cepeda, Julio & Muñoz-Cerón, Emilio, 2023. "Social acceptance of renewable energy development in southern Spain: Exploring tendencies, locations, criteria and situations," Energy Policy, Elsevier, vol. 173(C).
    15. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).
    16. Astrid Buchmayr & Luc Van Ootegem & Jo Dewulf & Elsy Verhofstadt, 2021. "Understanding Attitudes towards Renewable Energy Technologies and the Effect of Local Experiences," Energies, MDPI, vol. 14(22), pages 1-23, November.
    17. Salak, B. & Kienast, F. & Olschewski, R. & Spielhofer, R. & Wissen Hayek, U. & Grêt-Regamey, A. & Hunziker, M., 2022. "Impact on the perceived landscape quality through renewable energy infrastructure. A discrete choice experiment in the context of the Swiss energy transition," Renewable Energy, Elsevier, vol. 193(C), pages 299-308.
    18. Indre Siksnelyte-Butkiene & Dalia Streimikiene & Giulio Paolo Agnusdei & Tomas Balezentis, 2023. "Energy-space concept for the transition to a low-carbon energy society," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 14953-14973, December.
    19. Lehmann, Paul & Tafarte, Philip, 2023. "The opportunity costs of environmental exclusion zones for renewable energy deployment," UFZ Discussion Papers 2/2023, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    20. Lehmann, Paul & Tafarte, Philip, 2024. "Exclusion zones for renewable energy deployment: One man’s blessing, another man’s curse," Resource and Energy Economics, Elsevier, vol. 76(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59029-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.