IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p9899-d1176271.html
   My bibliography  Save this article

Integration of Public Perception in the Assessment of Licensed Solar Farms: A Case Study in Greece

Author

Listed:
  • Anna Codemo

    (Department of Civil Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Ambra Barbini

    (Department of Civil Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Ahi Mantouza

    (Consortis, 27 Georgikis Scholis Avenue, 57001 Thessaloniki, Greece)

  • Anastasios Bitziadis

    (Consortis Geospatial, 27 Georgikis Scholis Avenue, 57001 Thessaloniki, Greece)

  • Rossano Albatici

    (Department of Civil Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

Abstract

The increasing adoption of solar power plants requires the consideration of different aspects involved in the transformation of landscape. In this view, recent studies encourage public engagement and landscape integration strategies in the decision-making process to ensure an accepted and inclusive energy transition. However, there is limited knowledge on how to include landscape considerations in the planning processes, specifically on public perception and values. This work aims to assess five licensed solar farms in the region of Central Macedonia (Greece) based on the opinion of the inhabitants. The paper presents the results of an online and onsite questionnaire administered in different villages around the study area in October 2022. The survey utilized the potential benefits and impacts, as well as siting criteria and spatial configuration strategies, taken from literature to describe public perception and preferences. The methodology consists of three phases: investigation of public perception on solar farms; operationalization of the results to make them spatially explicit; overall suitability of the areas and mitigation strategies. The results illustrate the prioritization of the perceived impacts and benefits of photovoltaic installations and highlight the different levels of suitability of the areas and possible mitigation measures. The proposed approach is complementary to the planning processes taking into account societal considerations.

Suggested Citation

  • Anna Codemo & Ambra Barbini & Ahi Mantouza & Anastasios Bitziadis & Rossano Albatici, 2023. "Integration of Public Perception in the Assessment of Licensed Solar Farms: A Case Study in Greece," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9899-:d:1176271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/9899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/9899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Devine-Wright, Patrick & Wiersma, Bouke, 2020. "Understanding community acceptance of a potential offshore wind energy project in different locations: An island-based analysis of ‘place-technology fit’," Energy Policy, Elsevier, vol. 137(C).
    2. Ming Lu & Alin Lin & Jiyi Sun, 2018. "The Impact of Photovoltaic Applications on Urban Landscapes Based on Visual Q Methodology," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    3. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    4. Maddalena Ferretti & Sara Favargiotti & Barbara Lino & Diana Rolando, 2022. "Branding4Resilience: Explorative and Collaborative Approaches for Inner Territories," Sustainability, MDPI, vol. 14(18), pages 1-33, September.
    5. Karteris, M. & Papadopoulos, A.M., 2013. "Legislative framework for photovoltaics in Greece: A review of the sector's development," Energy Policy, Elsevier, vol. 55(C), pages 296-304.
    6. Picchi, Paolo & van Lierop, Martina & Geneletti, Davide & Stremke, Sven, 2019. "Advancing the relationship between renewable energy and ecosystem services for landscape planning and design: A literature review," Ecosystem Services, Elsevier, vol. 35(C), pages 241-259.
    7. Marco Segreto & Lucas Principe & Alexandra Desormeaux & Marco Torre & Laura Tomassetti & Patrizio Tratzi & Valerio Paolini & Francesco Petracchini, 2020. "Trends in Social Acceptance of Renewable Energy Across Europe—A Literature Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    8. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2009. "The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2441-2451, December.
    9. Spielhofer, R. & Thrash, T. & Hayek, U. Wissen & Grêt-Regamey, A. & Salak, B. & Grübel, J. & Schinazi, V.R., 2021. "Physiological and behavioral reactions to renewable energy systems in various landscape types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    11. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    12. Turney, Damon & Fthenakis, Vasilis, 2011. "Environmental impacts from the installation and operation of large-scale solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3261-3270, August.
    13. Salak, B. & Lindberg, K. & Kienast, F. & Hunziker, M., 2021. "How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. del Río, Pablo & Burguillo, Mercedes, 2008. "Assessing the impact of renewable energy deployment on local sustainability: Towards a theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1325-1344, June.
    15. Sirnik, I. & Sluijsmans, J. & Oudes, D. & Stremke, S., 2023. "Circularity and landscape experience of agrivoltaics: A systematic review of literature and built systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    16. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    17. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    18. Oudes, D. & Stremke, S., 2021. "Next generation solar power plants? A comparative analysis of frontrunner solar landscapes in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    20. Denholm, Paul & Margolis, Robert M., 2008. "Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States," Energy Policy, Elsevier, vol. 36(9), pages 3531-3543, September.
    21. Perlaviciute, Goda & Steg, Linda, 2014. "Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 361-381.
    22. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    23. Randle-Boggis, R.J. & White, P.C.L. & Cruz, J. & Parker, G. & Montag, H. & Scurlock, J.M.O. & Armstrong, A., 2020. "Realising co-benefits for natural capital and ecosystem services from solar parks: A co-developed, evidence-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    24. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2011. "On the applicability of the visual impact assessment OAISPP tool to photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 845-850, January.
    25. Mhairi Aitken & Claire Haggett & David Rudolph, 2016. "Practices and rationales of community engagement with wind farms: awareness raising, consultation, empowerment," Planning Theory & Practice, Taylor & Francis Journals, vol. 17(4), pages 557-576, October.
    26. Kapetanakis, I.A. & Kolokotsa, D. & Maria, E.A., 2014. "Parametric analysis and assessment of the photovoltaics' landscape integration: Technical and legal aspects," Renewable Energy, Elsevier, vol. 67(C), pages 207-214.
    27. Balta-Ozkan, Nazmiye & Watson, Tom & Mocca, Elisabetta, 2015. "Spatially uneven development and low carbon transitions: Insights from urban and regional planning," Energy Policy, Elsevier, vol. 85(C), pages 500-510.
    28. Frantál, Bohumil & Van der Horst, Dan & Martinát, Stanislav & Schmitz, Serge & Teschner, Na´ama & Silva, Luis & Golobic, Mojca & Roth, Michael, 2018. "Spatial targeting, synergies and scale: Exploring the criteria of smart practices for siting renewable energy projects," Energy Policy, Elsevier, vol. 120(C), pages 85-93.
    29. van den Berg, Kimo & Tempels, Barbara, 2022. "The role of community benefits in community acceptance of multifunctional solar farms in the Netherlands," Land Use Policy, Elsevier, vol. 122(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oudes, D. & Stremke, S., 2021. "Next generation solar power plants? A comparative analysis of frontrunner solar landscapes in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    3. Bevk, Tadej & Golobič, Mojca, 2020. "Contentious eye-catchers: Perceptions of landscapes changed by solar power plants in Slovenia," Renewable Energy, Elsevier, vol. 152(C), pages 999-1010.
    4. Salak, B. & Lindberg, K. & Kienast, F. & Hunziker, M., 2021. "How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Ioannidis, R. & Mamassis, N. & Efstratiadis, A. & Koutsoyiannis, D., 2022. "Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Salak, B. & Kienast, F. & Olschewski, R. & Spielhofer, R. & Wissen Hayek, U. & Grêt-Regamey, A. & Hunziker, M., 2022. "Impact on the perceived landscape quality through renewable energy infrastructure. A discrete choice experiment in the context of the Swiss energy transition," Renewable Energy, Elsevier, vol. 193(C), pages 299-308.
    7. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    8. Sánchez-Pantoja, Núria & Vidal, Rosario & Pastor, M. Carmen, 2018. "Aesthetic impact of solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 227-238.
    9. Yanay Farja & Mariusz Maciejczak, 2021. "Economic Implications of Agricultural Land Conversion to Solar Power Production," Energies, MDPI, vol. 14(19), pages 1-15, September.
    10. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Semeraro, Teodoro & Pomes, Alessandro & Del Giudice, Cecilia & Negro, Danilo & Aretano, Roberta, 2018. "Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services," Energy Policy, Elsevier, vol. 117(C), pages 218-227.
    12. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    13. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    14. Emma Uebelhor & Olivia Hintz & Sarah B. Mills & Abigail Randall, 2021. "Utility-Scale Solar in the Great Lakes: Analyzing Community Reactions to Solar Developments," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    15. Alexandra Vrînceanu & Ines Grigorescu & Monica Dumitrașcu & Irena Mocanu & Cristina Dumitrică & Dana Micu & Gheorghe Kucsicsa & Bianca Mitrică, 2019. "Impacts of Photovoltaic Farms on the Environment in the Romanian Plain," Energies, MDPI, vol. 12(13), pages 1-18, July.
    16. Horner, Robert M. & Clark, Corrie E., 2013. "Characterizing variability and reducing uncertainty in estimates of solar land use energy intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 129-137.
    17. Picchi, Paolo & van Lierop, Martina & Geneletti, Davide & Stremke, Sven, 2019. "Advancing the relationship between renewable energy and ecosystem services for landscape planning and design: A literature review," Ecosystem Services, Elsevier, vol. 35(C), pages 241-259.
    18. Núria Sánchez-Pantoja & Rosario Vidal & M. Carmen Pastor, 2021. "EU-Funded Projects with Actual Implementation of Renewable Energies in Cities. Analysis of Their Concern for Aesthetic Impact," Energies, MDPI, vol. 14(6), pages 1-24, March.
    19. Lange, Marcus & Cummins, Valerie, 2021. "Managing stakeholder perception and engagement for marine energy transitions in a decarbonising world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Rodríguez-Segura, Francisco Javier & Osorio-Aravena, Juan Carlos & Frolova, Marina & Terrados-Cepeda, Julio & Muñoz-Cerón, Emilio, 2023. "Social acceptance of renewable energy development in southern Spain: Exploring tendencies, locations, criteria and situations," Energy Policy, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9899-:d:1176271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.