IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v67y2014icp207-214.html
   My bibliography  Save this article

Parametric analysis and assessment of the photovoltaics' landscape integration: Technical and legal aspects

Author

Listed:
  • Kapetanakis, I.A.
  • Kolokotsa, D.
  • Maria, E.A.

Abstract

The increasing spread of photovoltaic (PV) systems occurring nowadays does not always keep pace with respective legislative initiatives, especially those regarding a specific relation between PV systems, the natural environment and landscape. As a result of this differentiation, the existence of legislative gaps or omissions is noticed. Thus, while the development of Renewable Energy Sources (RES) is actively promoted by the government in general, from a legal point of view there are no equivalent preventive measures for the protection and preservation of physical environment and landscape aesthetics, at least in all types of RES, with the exception of wind farms. In fact, in the case of PV systems, there is no specific legal framework, which would regulate their integration in the environment, and in particular into landscape.

Suggested Citation

  • Kapetanakis, I.A. & Kolokotsa, D. & Maria, E.A., 2014. "Parametric analysis and assessment of the photovoltaics' landscape integration: Technical and legal aspects," Renewable Energy, Elsevier, vol. 67(C), pages 207-214.
  • Handle: RePEc:eee:renene:v:67:y:2014:i:c:p:207-214
    DOI: 10.1016/j.renene.2013.11.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113006216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.11.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torres-Sibille, Ana del Carmen & Cloquell-Ballester, Vicente-Agustín & Cloquell-Ballester, Víctor-Andrés & Artacho Ramírez, Miguel Ángel, 2009. "Aesthetic impact assessment of solar power plants: An objective and a subjective approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 986-999, June.
    2. Baltas, A.E. & Dervos, A.N., 2012. "Special framework for the spatial planning & the sustainable development of renewable energy sources," Renewable Energy, Elsevier, vol. 48(C), pages 358-363.
    3. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2009. "The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2441-2451, December.
    4. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2011. "On the applicability of the visual impact assessment OAISPP tool to photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 845-850, January.
    5. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    2. Sánchez-Pantoja, Núria & Vidal, Rosario & Pastor, M. Carmen, 2018. "Aesthetic impact of solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 227-238.
    3. Irie, Noriko & Kawahara, Naoko, 2022. "Consumer preferences for local renewable electricity production in Japan: A choice experiment," Renewable Energy, Elsevier, vol. 182(C), pages 1171-1181.
    4. Bevk, Tadej & Golobič, Mojca, 2020. "Contentious eye-catchers: Perceptions of landscapes changed by solar power plants in Slovenia," Renewable Energy, Elsevier, vol. 152(C), pages 999-1010.
    5. Anna Codemo & Ambra Barbini & Ahi Mantouza & Anastasios Bitziadis & Rossano Albatici, 2023. "Integration of Public Perception in the Assessment of Licensed Solar Farms: A Case Study in Greece," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    6. Semeraro, Teodoro & Pomes, Alessandro & Del Giudice, Cecilia & Negro, Danilo & Aretano, Roberta, 2018. "Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services," Energy Policy, Elsevier, vol. 117(C), pages 218-227.
    7. Picchi, Paolo & van Lierop, Martina & Geneletti, Davide & Stremke, Sven, 2019. "Advancing the relationship between renewable energy and ecosystem services for landscape planning and design: A literature review," Ecosystem Services, Elsevier, vol. 35(C), pages 241-259.
    8. Oudes, D. & Stremke, S., 2021. "Next generation solar power plants? A comparative analysis of frontrunner solar landscapes in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Núria Sánchez-Pantoja & Rosario Vidal & M. Carmen Pastor, 2021. "EU-Funded Projects with Actual Implementation of Renewable Energies in Cities. Analysis of Their Concern for Aesthetic Impact," Energies, MDPI, vol. 14(6), pages 1-24, March.
    10. Diego, Jesús C. & Bonete, Saray & Chías, Pilar, 2022. "VIA-7 Method: A seven perceptual parameters methodology for the assessment of visual impact caused by wind and solar facilities on the landscape in cultural heritage sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    12. Riccardo Squatrito & Filippo Sgroi & Salvatore Tudisca & Anna Maria Di Trapani & Riccardo Testa, 2014. "Post Feed-in Scheme Photovoltaic System Feasibility Evaluation in Italy: Sicilian Case Studies," Energies, MDPI, vol. 7(11), pages 1-19, November.
    13. Manchado, Cristina & Gomez-Jauregui, Valentin & Lizcano, Piedad E. & Iglesias, Andres & Galvez, Akemi & Otero, Cesar, 2019. "Wind farm repowering guided by visual impact criteria," Renewable Energy, Elsevier, vol. 135(C), pages 197-207.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    2. Salak, B. & Lindberg, K. & Kienast, F. & Hunziker, M., 2021. "How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Oudes, D. & Stremke, S., 2021. "Next generation solar power plants? A comparative analysis of frontrunner solar landscapes in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Ming Lu & Alin Lin & Jiyi Sun, 2018. "The Impact of Photovoltaic Applications on Urban Landscapes Based on Visual Q Methodology," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    5. Alexandra Vrînceanu & Ines Grigorescu & Monica Dumitrașcu & Irena Mocanu & Cristina Dumitrică & Dana Micu & Gheorghe Kucsicsa & Bianca Mitrică, 2019. "Impacts of Photovoltaic Farms on the Environment in the Romanian Plain," Energies, MDPI, vol. 12(13), pages 1-18, July.
    6. Anna Codemo & Ambra Barbini & Ahi Mantouza & Anastasios Bitziadis & Rossano Albatici, 2023. "Integration of Public Perception in the Assessment of Licensed Solar Farms: A Case Study in Greece," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    7. Botelho, Anabela & Lourenço-Gomes, Lina & Pinto, Lígia & Sousa, Sara & Valente, Marieta, 2017. "Accounting for local impacts of photovoltaic farms: The application of two stated preferences approaches to a case-study in Portugal," Energy Policy, Elsevier, vol. 109(C), pages 191-198.
    8. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2011. "On the applicability of the visual impact assessment OAISPP tool to photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 845-850, January.
    9. Sánchez-Pantoja, Núria & Vidal, Rosario & Pastor, M. Carmen, 2018. "Aesthetic impact of solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 227-238.
    10. Irie, Noriko & Kawahara, Naoko, 2022. "Consumer preferences for local renewable electricity production in Japan: A choice experiment," Renewable Energy, Elsevier, vol. 182(C), pages 1171-1181.
    11. Bevk, Tadej & Golobič, Mojca, 2020. "Contentious eye-catchers: Perceptions of landscapes changed by solar power plants in Slovenia," Renewable Energy, Elsevier, vol. 152(C), pages 999-1010.
    12. Salak, B. & Kienast, F. & Olschewski, R. & Spielhofer, R. & Wissen Hayek, U. & Grêt-Regamey, A. & Hunziker, M., 2022. "Impact on the perceived landscape quality through renewable energy infrastructure. A discrete choice experiment in the context of the Swiss energy transition," Renewable Energy, Elsevier, vol. 193(C), pages 299-308.
    13. Picchi, Paolo & van Lierop, Martina & Geneletti, Davide & Stremke, Sven, 2019. "Advancing the relationship between renewable energy and ecosystem services for landscape planning and design: A literature review," Ecosystem Services, Elsevier, vol. 35(C), pages 241-259.
    14. Anabela Botelho & Lina Lourenço-Gomes & Lígia M. Costa Pinto & Sara Sousa & Marieta Valente, 2018. "Discrete-choice experiments valuing local environmental impacts of renewables: two approaches to a case study in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 145-162, December.
    15. Terrapon-Pfaff, Julia & Fink, Thomas & Viebahn, Peter & Jamea, El Mostafa, 2019. "Social impacts of large-scale solar thermal power plants: Assessment results for the NOORO I power plant in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    16. Choi, Jihye & Kim, Justine Jihyun & Lee, Jongsu, 2024. "Public willingness to pay for mitigating local conflicts over the construction of renewable energy facilities: A contingent valuation study in South Korea," Energy Policy, Elsevier, vol. 185(C).
    17. Horner, Robert M. & Clark, Corrie E., 2013. "Characterizing variability and reducing uncertainty in estimates of solar land use energy intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 129-137.
    18. Turney, Damon & Fthenakis, Vasilis, 2011. "Environmental impacts from the installation and operation of large-scale solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3261-3270, August.
    19. Spielhofer, R. & Thrash, T. & Hayek, U. Wissen & Grêt-Regamey, A. & Salak, B. & Grübel, J. & Schinazi, V.R., 2021. "Physiological and behavioral reactions to renewable energy systems in various landscape types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:67:y:2014:i:c:p:207-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.