IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3114-d515590.html
   My bibliography  Save this article

Clean Energies for Ghana—An Empirical Study on the Level of Social Acceptance of Renewable Energy Development and Utilization

Author

Listed:
  • Ephraim Bonah Agyekum

    (Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin 620002, 19 Mira Street, 60002 Ekaterinburg, Russia
    Department of Applied Physics, University for Development Studies, P.O. Box TL, Tamale 1350, Ghana)

  • Ernest Baba Ali

    (Department of Environmental Economics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 19 Mira Street, 60002 Ekaterinburg, Russia)

  • Nallapaneni Manoj Kumar

    (School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
    Afro InterGreen Energy Ltd., Wuse, 900285 Abuja, Nigeria)

Abstract

Despite the enormous renewable energy (RE) resources available in Ghana, the country has not seen much development and investments in the sector. Therefore, the government has committed to increasing the share of RE in the country’s electricity generation mix to some 10% by 2030. However, this cannot be achieved without the Ghanaian people’s support since the RE sector is capital intensive and requires both public and private sector participation. This study was conducted to evaluate RE’s social acceptance among Ghanaian people using the ordered logit regression model. A total of 999 valid questionnaires out of 1020 distributed questionnaires were considered for the study. The five-point Likert scale was employed to rank their willingness to accept (WTA) RE. From the results, it was observed that there is a general sense of acceptance of renewable energy among Ghanaians. However, the level of acceptance varies from one respondent to another. The study observed that a majority of the respondents (i.e., approximately 45.65%) agree to their WTA renewable energy, while 36.04% strongly agree. The results also indicate that while 6.21% and 0.3% disagree and strongly disagree, 11.81% of the respondents were indifferent regarding their willingness to accept renewable energy development and utilization in Ghana.

Suggested Citation

  • Ephraim Bonah Agyekum & Ernest Baba Ali & Nallapaneni Manoj Kumar, 2021. "Clean Energies for Ghana—An Empirical Study on the Level of Social Acceptance of Renewable Energy Development and Utilization," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3114-:d:515590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scarpa, Riccardo & Willis, Ken, 2010. "Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies," Energy Economics, Elsevier, vol. 32(1), pages 129-136, January.
    2. Sardianou, E. & Genoudi, P., 2013. "Which factors affect the willingness of consumers to adopt renewable energies?," Renewable Energy, Elsevier, vol. 57(C), pages 1-4.
    3. Kardooni, Roozbeh & Yusoff, Sumiani Binti & Kari, Fatimah Binti, 2016. "Renewable energy technology acceptance in Peninsular Malaysia," Energy Policy, Elsevier, vol. 88(C), pages 1-10.
    4. Ana Ramos & Xavier Labandeira & Andreas Löschel, 2016. "Pro-environmental Households and Energy Efficiency in Spain," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(2), pages 367-393, February.
    5. D׳Souza, Clare & Yiridoe, Emmanuel K., 2014. "Social acceptance of wind energy development and planning in rural communities of Australia: A consumer analysis," Energy Policy, Elsevier, vol. 74(C), pages 262-270.
    6. Azarova, Valeriya & Cohen, Jed & Friedl, Christina & Reichl, Johannes, 2019. "Designing local renewable energy communities to increase social acceptance: Evidence from a choice experiment in Austria, Germany, Italy, and Switzerland," Energy Policy, Elsevier, vol. 132(C), pages 1176-1183.
    7. Kaldellis, J. K., 2005. "Social attitude towards wind energy applications in Greece," Energy Policy, Elsevier, vol. 33(5), pages 595-602, March.
    8. Kardooni, Roozbeh & Yusoff, Sumiani Binti & Kari, Fatimah Binti & Moeenizadeh, Leila, 2018. "Public opinion on renewable energy technologies and climate change in Peninsular Malaysia," Renewable Energy, Elsevier, vol. 116(PA), pages 659-668.
    9. Aklin, Michaël & Cheng, Chao-Yo & Urpelainen, Johannes, 2018. "Social acceptance of new energy technology in developing countries: A framing experiment in rural India," Energy Policy, Elsevier, vol. 113(C), pages 466-477.
    10. Hansla, Andre & Gamble, Amelie & Juliusson, Asgeir & Garling, Tommy, 2008. "Psychological determinants of attitude towards and willingness to pay for green electricity," Energy Policy, Elsevier, vol. 36(2), pages 768-774, February.
    11. Hall, N. & Ashworth, P. & Devine-Wright, P., 2013. "Societal acceptance of wind farms: Analysis of four common themes across Australian case studies," Energy Policy, Elsevier, vol. 58(C), pages 200-208.
    12. Paravantis, John A. & Stigka, Eleni & Mihalakakou, Giouli & Michalena, Evanthie & Hills, Jeremy M. & Dourmas, Vasilis, 2018. "Social acceptance of renewable energy projects: A contingent valuation investigation in Western Greece," Renewable Energy, Elsevier, vol. 123(C), pages 639-651.
    13. Guta, Dawit Diriba, 2020. "Determinants of household use of energy-efficient and renewable energy technologies in rural Ethiopia," Technology in Society, Elsevier, vol. 61(C).
    14. Kim, Younghwan & Kim, Minki & Kim, Wonjoon, 2013. "Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 61(C), pages 822-828.
    15. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2008. "The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy," Ecological Economics, Elsevier, vol. 67(1), pages 140-152, August.
    16. Batley, S. L. & Colbourne, D. & Fleming, P. D. & Urwin, P., 2001. "Citizen versus consumer: challenges in the UK green power market," Energy Policy, Elsevier, vol. 29(6), pages 479-487, May.
    17. Zoellner, Jan & Schweizer-Ries, Petra & Wemheuer, Christin, 2008. "Public acceptance of renewable energies: Results from case studies in Germany," Energy Policy, Elsevier, vol. 36(11), pages 4136-4141, November.
    18. Assefa, G. & Frostell, B., 2007. "Social sustainability and social acceptance in technology assessment: A case study of energy technologies," Technology in Society, Elsevier, vol. 29(1), pages 63-78.
    19. Karatepe, Yelda & Neşe, Seçil Varbak & Keçebaş, Ali & Yumurtacı, Mehmet, 2012. "The levels of awareness about the renewable energy sources of university students in Turkey," Renewable Energy, Elsevier, vol. 44(C), pages 174-179.
    20. Kim, Junghun & Park, Stephen Youngjun & Lee, Jongsu, 2018. "Do people really want renewable energy? Who wants renewable energy?: Discrete choice model of reference-dependent preference in South Korea," Energy Policy, Elsevier, vol. 120(C), pages 761-770.
    21. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    22. Jeremy Firestone & Willett Kempton & Meredith Blaydes Lilley & Kateryna Samoteskul, 2012. "Public acceptance of offshore wind power across regions and through time," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 55(10), pages 1369-1386, April.
    23. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    24. Claudy, Marius C. & Michelsen, Claus & O'Driscoll, Aidan & Mullen, Michael R., 2010. "Consumer awareness in the adoption of microgeneration technologies: An empirical investigation in the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2154-2160, September.
    25. Li, Jianglong & Yang, Lisha & Long, Houyin, 2018. "Climatic impacts on energy consumption: Intensive and extensive margins," Energy Economics, Elsevier, vol. 71(C), pages 332-343.
    26. Bauwens, Thomas & Devine-Wright, Patrick, 2018. "Positive energies? An empirical study of community energy participation and attitudes to renewable energy," Energy Policy, Elsevier, vol. 118(C), pages 612-625.
    27. Fang, Xingming & Wang, Lu & Sun, Chuanwang & Zheng, Xuemei & Wei, Jing, 2021. "Gap between words and actions: Empirical study on consistency of residents supporting renewable energy development in China," Energy Policy, Elsevier, vol. 148(PA).
    28. Zyadin, Anas & Puhakka, Antero & Ahponen, Pirkkoliisa & Pelkonen, Paavo, 2014. "Secondary school teachers' knowledge, perceptions, and attitudes toward renewable energy in Jordan," Renewable Energy, Elsevier, vol. 62(C), pages 341-348.
    29. Economou, Agisilaos, 2010. "Renewable energy resources and sustainable development in Mykonos (Greece)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1496-1501, June.
    30. Kim, Kyung Jae & Lee, Hwarang & Koo, Yoonmo, 2020. "Research on local acceptance cost of renewable energy in South Korea: A case study of photovoltaic and wind power projects," Energy Policy, Elsevier, vol. 144(C).
    31. Jeremy Firestone & Willett Kempton & Meredith Blaydes Lilley & Kateryna Samoteskul, 2012. "Public acceptance of offshore wind power: does perceived fairness of process matter?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 55(10), pages 1387-1402, April.
    32. Jung, Nusrat & Moula, Munjur E. & Fang, Tingting & Hamdy, Mohamed & Lahdelma, Risto, 2016. "Social acceptance of renewable energy technologies for buildings in the Helsinki Metropolitan Area of Finland," Renewable Energy, Elsevier, vol. 99(C), pages 813-824.
    33. Liu, Wenling & Wang, Can & Mol, Arthur P.J., 2013. "Rural public acceptance of renewable energy deployment: The case of Shandong in China," Applied Energy, Elsevier, vol. 102(C), pages 1187-1196.
    34. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2013. "Motivations and barriers associated with adopting microgeneration energy technologies in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 655-666.
    35. Stigka, Eleni K. & Paravantis, John A. & Mihalakakou, Giouli K., 2014. "Social acceptance of renewable energy sources: A review of contingent valuation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 100-106.
    36. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    37. Zografakis, Nikolaos & Sifaki, Elli & Pagalou, Maria & Nikitaki, Georgia & Psarakis, Vasilios & Tsagarakis, Konstantinos P., 2010. "Assessment of public acceptance and willingness to pay for renewable energy sources in Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1088-1095, April.
    38. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Socioeconomic and demographic factors that influence publics' awareness on the different forms of renewable energy sources," Renewable Energy, Elsevier, vol. 71(C), pages 480-485.
    39. Kim, Jeayoon & Park, Kwangwoo, 2016. "Financial development and deployment of renewable energy technologies," Energy Economics, Elsevier, vol. 59(C), pages 238-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomiwa Sunday Adebayo & Mary Oluwatoyin Agboola & Husam Rjoub & Ibrahim Adeshola & Ephraim Bonah Agyekum & Nallapaneni Manoj Kumar, 2021. "Linking Economic Growth, Urbanization, and Environmental Degradation in China: What Is the Role of Hydroelectricity Consumption?," IJERPH, MDPI, vol. 18(13), pages 1-14, June.
    2. Dmitriy Li & Jeong-Hwan Bae & Meenakshi Rishi, 2022. "A Preference Analysis for a Peer-to-Peer (P2P) Electricity Trading Platform in South Korea," Energies, MDPI, vol. 15(21), pages 1-20, October.
    3. Katharina Löhr & Custódio Efraim Matavel & Sophia Tadesse & Masoud Yazdanpanah & Stefan Sieber & Nadejda Komendantova, 2022. "Just Energy Transition: Learning from the Past for a More Just and Sustainable Hydrogen Transition in West Africa," Land, MDPI, vol. 11(12), pages 1-23, December.
    4. Li Yang & Sumaiya Bashiru Danwana & Issahaku Fadilul-lah Yassaanah, 2021. "An Empirical Study of Renewable Energy Technology Acceptance in Ghana Using an Extended Technology Acceptance Model," Sustainability, MDPI, vol. 13(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Xingming & Wang, Lu & Sun, Chuanwang & Zheng, Xuemei & Wei, Jing, 2021. "Gap between words and actions: Empirical study on consistency of residents supporting renewable energy development in China," Energy Policy, Elsevier, vol. 148(PA).
    2. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Personal and psychological factors affecting the successful development of solar energy use in Yemen power sector: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 516-535.
    3. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava, 2018. "Social acceptance of green energy determinants using principal component analysis," Energy, Elsevier, vol. 160(C), pages 1030-1046.
    4. Ana María González & Harrison Sandoval & Pilar Acosta & Felipe Henao, 2016. "On the Acceptance and Sustainability of Renewable Energy Projects—A Systems Thinking Perspective," Sustainability, MDPI, vol. 8(11), pages 1-21, November.
    5. Zoltán Szakály & Péter Balogh & Enikő Kontor & Zoltán Gabnai & Attila Bai, 2020. "Attitude toward and Awareness of Renewable Energy Sources: Hungarian Experience and Special Features," Energies, MDPI, vol. 14(1), pages 1-25, December.
    6. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).
    7. Nuortimo, Kalle & Härkönen, Janne, 2018. "Opinion mining approach to study media-image of energy production. Implications to public acceptance and market deployment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 210-217.
    8. Nketiah, Emmanuel & Song, Huaming & Obuobi, Bright & Adu-Gyamfi, Gibbson & Adjei, Mavis & Cudjoe, Dan, 2022. "Citizens' willingness to pay for local anaerobic digestion energy: The influence of altruistic value and knowledge," Energy, Elsevier, vol. 260(C).
    9. Stigka, Eleni K. & Paravantis, John A. & Mihalakakou, Giouli K., 2014. "Social acceptance of renewable energy sources: A review of contingent valuation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 100-106.
    10. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    11. Balezentis, Tomas & Streimikiene, Dalia & Mikalauskas, Ignas & Shen, Zhiyang, 2021. "Towards carbon free economy and electricity: The puzzle of energy costs, sustainability and security based on willingness to pay," Energy, Elsevier, vol. 214(C).
    12. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Alias Jedi & Sohif Mat & Kamaruzzaman Sopian & Azman Bin Abdul Rahim & Azami Zaharim, 2020. "Rural Public Acceptance of Wind and Solar Energy: A Case Study from Mersing, Malaysia," Energies, MDPI, vol. 13(15), pages 1-24, July.
    13. Stamatios Ntanos & Grigorios Kyriakopoulos & Miltiadis Chalikias & Garyfallos Arabatzis & Michalis Skordoulis, 2018. "Public Perceptions and Willingness to Pay for Renewable Energy: A Case Study from Greece," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    14. Busse, Maria & Siebert, Rosemarie, 2018. "Acceptance studies in the field of land use—A critical and systematic review to advance the conceptualization of acceptance and acceptability," Land Use Policy, Elsevier, vol. 76(C), pages 235-245.
    15. Dalia Streimikiene & Tomas Balezentis & Ilona Alisauskaite-Seskiene & Gintare Stankuniene & Zaneta Simanaviciene, 2019. "A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector," Energies, MDPI, vol. 12(8), pages 1-38, April.
    16. Cohen, Adi & Fischhendler, Itay & Katz, David, 2023. "Institutional acceptance of wildlife mitigation technologies for wind energy: The case of Israel," Energy Policy, Elsevier, vol. 173(C).
    17. Landeta-Manzano, Beñat & Arana-Landín, Germán & Calvo, Pilar M. & Heras-Saizarbitoria, Iñaki, 2018. "Wind energy and local communities: A manufacturer’s efforts to gain acceptance," Energy Policy, Elsevier, vol. 121(C), pages 314-324.
    18. Paravantis, John A. & Stigka, Eleni & Mihalakakou, Giouli & Michalena, Evanthie & Hills, Jeremy M. & Dourmas, Vasilis, 2018. "Social acceptance of renewable energy projects: A contingent valuation investigation in Western Greece," Renewable Energy, Elsevier, vol. 123(C), pages 639-651.
    19. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Socioeconomic and demographic factors that influence publics' awareness on the different forms of renewable energy sources," Renewable Energy, Elsevier, vol. 71(C), pages 480-485.
    20. Serena Y. Kim & Koushik Ganesan & Princess Dickens & Soumya Panda, 2021. "Public Sentiment toward Solar Energy—Opinion Mining of Twitter Using a Transformer-Based Language Model," Sustainability, MDPI, vol. 13(5), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3114-:d:515590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.